ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2013-01-11
    Description: We develop a 3-D finite-element model to study the viscoelastic response of a compressible Earth to surface loads. The effects of centre of mass motion, polar wander feedback, and self-consistent ocean loading are implemented. To assess the model's accuracy, we benchmark the numerical results against a semi-analytic solution for spherically symmetric structure. We force our model with the ICE-5G global ice loading history to study the effects of laterally varying viscosity structure on several glacial isostatic adjustment (GIA) observables, including relative sea-level (RSL) measurements in Canada, and present-day time-variable gravity and uplift rates in Antarctica. Canadian RSL observations have been used to determine the Earth's globally averaged viscosity profile. Antarctic GPS uplift rates have been used to constrain Antarctic GIA models. And GIA time-variable gravity and uplift signals are error sources for GRACE and altimeter estimates of present-day Antarctic ice mass loss, and must be modelled and removed from those estimates. Computing GIA results for a 3-D viscosity profile derived from a realistic seismic tomography model, and comparing with results computed for 1-D averages of that 3-D profile, we conclude that: (1) a GIA viscosity model based on Canadian relative sea-level data is more likely to represent a Canadian average than a true global average; (2) the effects of 3-D viscosity structure on GRACE estimates of present-day Antarctic mass loss are probably smaller than the difference between GIA models based on different Antarctic deglaciation histories and (3) the effects of 3-D viscosity structure on Antarctic GPS observations of present-day uplift rate can be significant, and can complicate efforts to use GPS observations to constrain 1-D GIA models.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...