ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 40 (1992), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: Elastic redatuming can be carried out before or after decomposition of the multicomponent data into independent PP, PS, SP, and SS responses. We argue that from a practical point of view, elastic redatuming is preferably applied after decomposition. We review forward and inverse extrapolation of decomposed P- and S-wavefields. We use the forward extrapolation operators to derive a model of discrete multicomponent seismic data. This forward model is fully described in terms of matrix manipulations.By applying these matrix manipulations in reverse order we arrive at an elastic processing scheme for multicomponent data in which elastic redatuming plays an essential role. Finally, we illustrate elastic redatuming with a controlled 2D example, consisting of simulated multicomponent seismic data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 34 (1986), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: Wave field extrapolation including critical angle events in modeling, migration and inversion can be handled with algorithms based on both the one-way wave equations and the two-way wave equation. It is shown that for 1-D inhomogeneous media, critical angle events as well as multiple reflections may elegantly be included in pre-stack modeling, pre-stack migration and velocity inversion. For 2-D and 3-D inhomogeneous media a powerful pre-stack migration scheme can be developed which includes critical angle events as well as multiple reflections. Finally, suggestions for practical applications are given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 38 (1990), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: Inversion of multicomponent seismic data can be subdivided in three main processes: (1) Surface-related preprocessing (decomposition of the multicomponent data into ‘primary’ P-and S-wave responses). (2) Prestack migration of the primary P- and S-wave responses, yielding the (angle-dependent) P-P, P-S, S-P and S-S reflectivity of the subsurface. (3) Target-related post-processing (transformation of the reflectivity into the rock and pore parameters in the target). This paper deals with the theoretical aspects of surface-related preprocessing.In a multicomponent seismic data set the P- and S-wave responses of the subsurface are distorted by two main causes: (1) The seismic vibrators always radiate a mixture of P- and S-waves into the subsurface. Similarly, the geophones always measure a mixture of P- and S-waves. (2) The free surface reflects any upgoing wave fully back into the subsurface. This gives rise to strong multiple reflections, including conversions.Therefore, surface-related preprocessing consists of two steps: (1)Decomposition of the multicomponent data (pseudo P- and S-wave responses) into true P- and S-wave responses. In practice this procedure involves (a) decomposition per common shot record of the particle velocity vector into scalar upgoing P- and S-waves, followed by (b) decomposition per common receiver record of the traction vector into scalar downgoing P- and S-waves. (2) Elimination of the surface-related multiple reflections and conversions. In this procedure the free surface is replaced by a reflection-free surface. The effect is that we obtain ‘primary’ P-and S-wave responses, that contain internal multiples only.An interesting aspect of the procedure is that no knowledge of the subsurface is required. In fact, the subsurface may have any degree of complexity. Both the decomposition step and the multiple elimination step are fully determined by the medium parameters at the free surface only. After surface-related preprocessing, the scalar P- and S-wave responses can be further processed independently by existing scalar algorithms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 38 (1990), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 38 (1990), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: The elastic Kirchhoff-Helmholtz integral expresses the components of the monochromatic displacement vector at any point A in terms of the displacement field and the stress field at any closed surface surrounding A. By introducing Green's functions for P- and S-waves, the elastic Kirchhoff-Helmholtz integral is modified such that it expresses either the P-wave or the S-wave at A in terms of the elastic wavefield at the closed surface. This modified elastic Kirchhoff-Helmholtz integral is transformed into one-way elastic Rayleigh-type integrals for forward extrapolation of downgoing and upgoing P- and S-waves. We also derive one-way elastic Rayleigh-type integrals for inverse extrapolation of downgoing and upgoing P- and S-waves. The one-way elastic extrapolation operators derived in this paper are the basis for a new prestack migration scheme for elastic data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 37 (1989), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: An efficient full 3D wavefield extrapolation technique is presented. The method can be used for any type of subsurface structure and the degree of accuracy and dip-angle performance are user-defined. The extrapolation is performed in the space-frequency domain as a space-dependent spatial convolution with recursive Kirchhoff extrapolation operators.To get a high level of efficiency the operators are optimized such that they have the smallest possible size for a specified accuracy and dip-angle performance. As both accuracy and maximum dip-angle are input parameters for the operator calculation, the method offers the possibility of a trade-off between these quantities and efficiency. The operators are calculated in advance and stored in a table for a range of wavenumbers. Once they have been calculated they can be used many times.At the basis of the operator design is the well-known phase-shift operator. Although this operator is exact for homogeneous media only, it is assumed that it may be applied locally in case of inhomogeneities. Lateral velocity variations can then be handled by choosing the extrapolation operator according to the local value of the velocity. Optionally the operators can be designed such that they act as spatially variant high-cut filters. This means that the evanescent field can be suppressed in one pass with the extrapolation. The extrapolation method can be used both in prestack and post-stack applications. In this paper we use it in zero-offset migration. Tests on 2D and 3D synthetic and 2D real data show the excellent quality of the method. The full 3D result is much better then the result of two-pass migration, which has been applied to the same data.The implementation yields a code that is fully vectorizable, which makes the method very suitable for vector computers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 37 (1989), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: In order to make 3D prestack depth migration feasible on modern computers it is necessary to use a target-oriented migration scheme. By limiting the output of the migration to a specific depth interval (target zone), the efficiency of the scheme is improved considerably. The first step in such a target-oriented approach is redatuming of the shot records at the surface to the upper boundary of the target zone. For this purpose, efficient non-recursive wavefield extrapolation operators should be generated. We propose a ray tracing method or the Gaussian beam method. With both methods operators can be efficiently generated for any irregular shooting geometry at the surface. As expected, the amplitude behaviour of the Gaussian beam method is better than that of the ray tracing based operators.The redatuming algorithm is performed per shot record, which makes the data handling very efficient. From the shot records at the surface‘genuine zero-offset data’are generated at the upper boundary of the target zone. Particularly in situations with a complicated overburden, the quality of target-oriented zero-offset data is much better than can be reached with a CMP stacking method at the surface. The target-oriented zero-offset data can be used as input to a full 3D zero-offset depth migration scheme, in order to obtain a depth section of the target zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 33 (1985), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: Part I of this series starts with a brief review of the fundamental principles underlying wave field extrapolation. Next, the total wave field is split into downgoing and upgoing waves, described by a set of coupled one-way wave equations. In cases of limited propagation angles and weak inhomogeneities these one-way wave equations can be decoupled, describing primary waves only. For large propagation angles (up to and including 90°) an alternative choice of sub-division into downgoing and upgoing waves is presented. It is shown that this approach is well suited for modeling as well as migration and inversion schemes for seismic data which include critical angle events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 34 (1986), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: In one-way wave field extrapolation downgoing and upgoing waves are treated independently, which is allowed if propagation at small angles against the vertical in (weakly) inhomogeneous media is considered. In practical implementation the slow convergence of the square-root operator causes numerical deficiencies. On the other hand, in two-way wave field extrapolation no assumptions need to be made on the separability of downgoing and upgoing waves. Furthermore, in practical implementation the use of the square-root operator is avoided. To put the two-way techniques into perspective, it is shown that two-way wave field extrapolation could be described in terms of one-way processes, namely: (1) decomposition of the total wave field into downgoing and upgoing waves; (2) one-way wave field extrapolation; (3) composition of the total wave field from its downgoing and upgoing constituents. This alternative description of two-way wave field extrapolation is valid for media which are homogeneous along the z-coordinate as well as for small dip angles in arbitrarily inhomogeneous media. In addition, it is shown that this description is also valid for large dip angles in 1-D (vertically) inhomogeneous media, including critical-angle events, when the WKBJ one-way wave functions discussed in part I of this paper are considered.For large dip angles in arbitrarily inhomogeneous media the two-way wave equation is solved by means of Taylor series expansion. For practical implementation a truncated operator is designed, assuming gentle horizontal variations of the medium properties. This operator is stable and converges already in the first order approximation, also for critical-angle events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 127 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A general one-way representation of seismic data can be obtained by substituting a Green's one-way wavefield matrix into a reciprocity theorem of the convolution type for one-way wavefields. From this general one-way representation, several special cases can be derived.By introducing a Green's one-way wavefield matrix for primaries, a generalized Bremmer series representation is obtained. Terminating this series after the first-order term yields a primary representation of seismic reflection data. According to this representation, primary seismic reflection data are proportional to a reflection operator, ‘modified’ by primary propagators for downgoing and upgoing waves. For seismic imaging, these propagators need to be inverted. Stable inverse primary propagators can easily be obtained from a one-way reciprocity theorem of the correlation type.By introducing a Green's one-way wavefield matrix for generalized primaries, an alternative representation is obtained in which multiple scattering is organized quite differently (in comparison with the generalized Bremmer series representation). According to the generalized primary representation, full seismic reflection data are proportional to a reflection operator, ‘modified’ by generalized primary propagators for downgoing and upgoing waves. Internal multiple scattering is fully included in the generalized primary propagators {either via a series expansion or in a parametrized way). Stable inverse generalized primary propagators can be obtained from the one-way reciprocity theorem of the correlation type. These inverse propagators are the nucleus for seismic imaging techniques that take the angle-dependent dispersion effects due to fine-layering into account.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...