ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 1 (1989), S. 810-818 
    ISSN: 1089-7666
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The flow of a centrifugally separating mixture of particles (droplets) and fluid is considered, with emphasis on the azimuthal no-slip requirement on the side wall of the cylindrical container. In the framework of the "mixture'' averaged equations—when the Ekman number E, particle Taylor number β, and relative density difference ε are small—a single partial differential nonhomogeneous parabolic equation is obtained for the angular velocity ω(r,t) (relative to the rotating vessel). Analytical and numerical solutions are presented for the dilute limit and for the more general case, respectively. It is shown that, during the separation process, ω develops a quasisteady boundary layer of thickness δ(λ/(λ−1))1/2 on r=1, only if λ〉1, where δ=H1/2E1/4 is the typical Stewartson layer scale, λ=E1/2/εβH, and H is the dimensionless height of the container. If λ≤1, however, the side wall affects ω in an unsteady, diffusing viscous domain. Correspondingly significant variations in the axial flux are induced by the Ekman layers. Comparisons to numerical results (produced by a code discussed elsewhere) of the full two-fluid equations display a favorable agreement.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Numerische Mathematik 39 (1982), S. 309-324 
    ISSN: 0945-3245
    Schlagwort(e): AMS (MOS): 65L10 ; CR: 5.17
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Mathematik
    Notizen: Summary A method for improvement of the numerical solution of differential equations by incorporation of asymptotic approximations is investigated for a class of singular perturbation problems. Uniform error estimates are derived for this method when implemented in known difference schemes and applied to linear second order O.D.E.'s. An improvement by a factor ofε n+1 can be obtained (where ɛ is the “small” parameter andn is the order of the asymptotic approximation) for a small amount of extra work. Numerical experiments are presented.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 1991-03-01
    Print ISSN: 0167-2584
    Digitale ISSN: 1878-1047
    Thema: Physik
    Publiziert von Elsevier
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019
    Beschreibung: 〈div data-abstract-type="normal"〉〈p〉The flow of a gravity current of finite volume and density 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 released from rest from a rectangular lock (of height 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉) into an ambient fluid of density 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 (〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉) in a system rotating with 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline5.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 about the vertical 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline6.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is investigated by means of fully resolved direct numerical simulations (DNS) and a theoretical model (based on shallow-water and Ekman layer spin-up theories, including mixing). The motion of the dense fluid includes several stages: propagation in the 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline7.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉-direction accompanied by Coriolis acceleration/deflection in the 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline8.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉-direction, which produces a quasi-steady wedge-shaped structure with significant anticyclonic velocity 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline9.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, followed by a spin-up reduction of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline10.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 accompanied by a slow 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline11.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 drift, and oscillation. The theoretical model aims to provide useful insights and approximations concerning the formation time and shape of wedge, and the subsequent spin-up effect. The main parameter is the Coriolis number, 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline12.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, where 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline13.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the reduced gravity. The DNS results are focused on a range of relatively small Coriolis numbers, 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline14.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 (i.e. Rossby number 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline15.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 in the range 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline16.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉), and a large range of Schmidt numbers 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline17.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉; the Reynolds number is large in all cases. The current spreads out in the 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline18.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 direction until it is arrested by the Coriolis effect (in 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline19.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 revolution of the system). A complex motion develops about this state. First, we record oscillations on the inertial time scale 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline20.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 (which are a part of the geostrophic adjustment), accompanied by vortices at the interface. Second, we note the spread of the wedge on a significantly longer time scale; this is an indirect spin-up effect – mixing and entrainment reduce the lateral (angular) velocity, which in turn decreases the Coriolis support to the 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline21.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 slope of the wedge shape. Contrary to non-rotating gravity currents, the front does not remain sharp as it is subject to (i) local stretching along the streamwise direction and (ii) convective mixing due to Kelvin–Helmholtz vortices generated by shear along the spanwise direction and stemming from Coriolis effects. The theoretical model predicts that the length of the wedge scales as 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline22.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 (in contrast to the Rossby radius 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline23.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 which is relevant for large 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline24.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉; and in contrast to 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190319101231250-0462:S0022112019001526:S0022112019001526_inline25.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 for the axisymmetric lens).〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Digitale ISSN: 1469-7645
    Thema: Maschinenbau , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 1991-03-01
    Print ISSN: 0039-6028
    Digitale ISSN: 1879-2758
    Thema: Physik
    Publiziert von Elsevier
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2008-08-13
    Print ISSN: 0001-5970
    Digitale ISSN: 1619-6937
    Thema: Maschinenbau , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2009-08-14
    Print ISSN: 0001-5970
    Digitale ISSN: 1619-6937
    Thema: Maschinenbau , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2011-06-23
    Print ISSN: 1567-7419
    Digitale ISSN: 1573-1510
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie , Geologie und Paläontologie
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2015-02-24
    Print ISSN: 1567-7419
    Digitale ISSN: 1573-1510
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie , Geologie und Paläontologie
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-05-29
    Print ISSN: 1567-7419
    Digitale ISSN: 1573-1510
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie , Geologie und Paläontologie
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...