ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-07-01
    Description: To simulate tropical cyclone (TC) intensification, coupled ocean–atmosphere prediction models must realistically reproduce the magnitude and pattern of storm-forced sea surface temperature (SST) cooling. The potential for the ocean to support intensification depends on the thermal energy available to the storm, which in turn depends on both the temperature and thickness of the upper-ocean warm layer. The ocean heat content (OHC) is used as an index of this potential. Large differences in available thermal energy associated with energetic boundary currents and ocean eddies require their accurate initialization in ocean models. Two generations of the experimental U.S. Navy ocean nowcast–forecast system based on the Hybrid Coordinate Ocean Model (HYCOM) are evaluated for this purpose in the NW Caribbean Sea and Gulf of Mexico prior to Hurricanes Isidore and Lili (2002), Ivan (2004), and Katrina (2005). Evaluations are conducted by comparison to in situ measurements, the navy’s three-dimensional Modular Ocean Data Assimilation System (MODAS) temperature and salinity analyses, microwave satellite SST, and fields of OHC and 26°C isotherm depth derived from satellite altimetry. Both nowcast–forecast systems represent the position of important oceanographic features with reasonable accuracy. Initial fields provided by the first-generation product had a large upper-ocean cold bias because the nowcast was initialized from a biased older-model run. SST response in a free-running Isidore simulation is improved by using initial and boundary fields with reduced cold bias generated from a HYCOM nowcast that relaxed model fields to MODAS analyses. A new climatological initialization procedure used for the second-generation nowcast system tended to reduce the cold bias, but the nowcast still could not adequately reproduce anomalously warm conditions present before all storms within the first few months following nowcast initialization. The initial cold biases in both nowcast products tended to decrease with time. A realistic free-running HYCOM simulation of the ocean response to Ivan illustrates the critical importance of correctly initializing both warm-core rings and cold-core eddies to correctly simulate the magnitude and pattern of SST cooling.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-01
    Electronic ISSN: 2333-5084
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRAD's first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed.
    Keywords: Meteorology and Climatology
    Type: M13-2741 , International Geoscience and Remote Sensing Symposium (IGARSS 2013); Jul 21, 2013 - Jul 26, 2013; Melborurne; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: HIRAD is a new technology developed by NASA/MSFC, in partnership with NOAA and the Universities of Central Florida, Michigan, and Alabama-Huntsville. HIRAD is designed to measure wind speed and rain rate over a wide swath in heavy-rain, strong-wind conditions. HIRAD is expected to eventually fly routinely on unmanned aerial vehicles (UAVs) such as Global Hawk over hurricanes threatening the U.S. coast and other Atlantic basin areas, and possibly in the Western Pacific as well. HIRAD first flew on GRIP in 2010 and is part of the 2012-14 NASA Hurricane and Severe Storm Sentinel (HS3) mission on the Global Hawk, a high-altitude UAV. The next-generation HIRAD will include wind direction observations, and the technology can eventually be used on a satellite platform to extend the dynamical range of Ocean Surface Wind (OSV) observations from space.
    Keywords: Meteorology and Climatology
    Type: M12-2344 , AMS 17th Conference on Integrated Observing and Assimilation Systems; Jan 05, 2013 - Jan 13, 2013; Austin, TX; United States|American Meteorological Society (AMS) 93rd Annual Meeting; Jan 05, 2013 - Jan 13, 2013; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: HIRAD flew on the WB-57 during NASA's GRIP (Genesis and Rapid Intensification Processes) campaign in August September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.
    Keywords: Meteorology and Climatology
    Type: M11-1293 , 30th Conference on Hurricanes and Tropical Meteorology; Apr 15, 2012 - Apr 20, 2012; Ponte Vedra Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: M12-1498 , 92nd American Meteorological Society Annual Meeting; Jan 22, 2012 - Jan 26, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: HIRAD flew on the WB-57 over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new Cband radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. (The resulting swath width for a platform at 60,000 feet is roughly 60 km, and resolution for most of the swath is around 2 km.) By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.
    Keywords: Meteorology and Climatology
    Type: M12-1483 , 66th Interdepartmental Hurricane Conference; Mar 05, 2012 - Mar 08, 2012; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: HIRAD (Hurricane Imaging Radiometer) flew on the WB-57 during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be inferred. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years. The advantage of HIRAD over SFMR is that HIRAD can observe a +/- 60-degree swath, rather than a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. To the extent possible, comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of vortex wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.
    Keywords: Meteorology and Climatology
    Type: M11-0958 , 92nd American Meteorological Society Annual Meeting; Jan 22, 2012 - Jan 26, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: HIRAD is a new technology developed by NASA/MSFC, in partnership with NOAA and the Universities of Central Florida, Michigan, and Alabama-Huntsville. HIRAD is designed to measure wind speed and rain rate over a wide swath in heavy-rain, strong-wind conditions. HIRAD is expected to eventually fly routinely on unmanned aerial vehicles (UAVs) such as Global Hawk over hurricanes threatening the U.S. coast and other Atlantic basin areas, and possibly in the Western Pacific as well. HIRAD first flew on GRIP in 2010 and is planned to fly 2012-14 on the NASA Hurricane and Severe Storm Sentinel (HS3) missions on the Global Hawk, a high-altitude UAV. HIRAD technology will eventually be used on a satellite platform to extend the dynamical range of Ocean Surface Wind (OSV) observations from space.
    Keywords: Instrumentation and Photography
    Type: M12-1727 , 30th AMS Conference on Hurricanes and Tropical Meteorology; Apr 15, 2012 - Apr 20, 2012; Ponte Vedra Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: HIRAD (Hurricane Imaging Radiometer) flew on the WB-57 during NASA's GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be inferred. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years. The advantage of HIRAD over SFMR is that HIRAD can observe a +/- 60-degree swath, rather than a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. To the extent possible, comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.
    Keywords: Meteorology and Climatology
    Type: M11-0223 , M11-1041 , 91st American Meterorological Society (AMS) Annual Meeting at the 15th Conference on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS)/AMS)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...