ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-04-01
    Description: For decades we have known that the overgrowth, hardening and scarring of tissues (so-called fibrosis) represents the final common pathway and best histological predictor of disease progression in most organs. Fibrosis is the culmination of both excess extracellular matrix deposition due to ongoing or severe injury, and a failure to regenerate. An inadequate wound repair process ultimately results in organ failure through a loss of function, and is therefore a major cause of morbidity and mortality in disease affecting both multiple and individual organs.Whilst the pathology of fibrosis and its significance are well understood, until recently we have known little about its molecular regulation. Current therapies are often indirect and non-specific, and only slow progression by a matter of months. The recent identification of novel therapeutic targets, and the development of new treatment strategies based on them, offers the exciting prospect of more efficacious therapies to treat this debilitating disorder.This Research Topic therefore compromises several up-to-date mini-reviews on currently known and emerging therapeutic targets for fibrosis including: the Transforming Growth Factor (TGF)-family; epigenetic factors; Angiotensin II type 2 (AT2) receptors; mineralocorticoid receptors; adenosine receptors; caveolins; and the sphingosine kinase/sphingosine 1-phosphate and notch signaling pathways. In each case, mechanistic insights into how each of these factors contribute to regulating fibrosis progression are described, along with how they can be targeted (by existing drugs, small molecules or other mimetics) to prevent and/or reverse fibrosis and its contribution to tissue dysfunction and failure. Two additional reviews will discuss various anti-fibrotic therapies that have demonstrated efficacy at the experimental level, but are not yet clinically approved; and the therapeutic potential vs limitations of stem cell-based therapies for reducing fibrosis while facilitating tissue repair. Finally, this Research Topic concludes with a clinical perspective of various anti-fibrotic therapies for cardiovascular disease (CVD), outlining limitations of currently used therapies, the pipeline of anti-fibrotics for CVD and why so many anti-fibrotic drugs have failed at the clinical level.
    Keywords: RM1-950 ; Q1-390 ; treatment strategies ; Fibrosis ; pharmacology ; collagen ; fibrogenesis ; therapeutic targets ; thema EDItEUR::M Medicine and Nursing::MK Medical specialties, branches of medicine::MKG Pharmacology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-21
    Description: TGF-β1 reprograms metabolism in renal fibroblasts, inducing a switch from oxidative phosphorylation to aerobic glycolysis. However, molecular events underpinning this are unknown. Here we identify that TGF-β1 downregulates acetyl-CoA biosynthesis via regulation of the pyruvate dehydrogenase complex (PDC). Flow cytometry showed that TGF-β1 reduced the PDC subunit PDH-E1α in fibroblasts derived from injured, but not normal kidneys. An increase in expression of PDH kinase 1 (PDK1), and reduction in the phosphatase PDP1, were commensurate with net phosphorylation and inactivation of PDC. Over-expression of mutant PDH-E1α, resistant to phosphorylation, ameliorated effects of TGF-β1, while inhibition of PDC activity with CPI-613 was sufficient to induce αSMA and pro-collagen I expression, markers of myofibroblast differentiation and fibroblast activation. The effect of TGF-β1 on PDC activity, acetyl-CoA, αSMA and pro-collagen I was also ameliorated by sodium dichloroacetate, a small molecule inhibitor of PDK. A reduction in acetyl-CoA, and therefore acetylation substrate, also resulted in a generalised loss of protein acetylation with TGF-β1. In conclusion, TGF-β1 in part regulates fibroblast activation via effects on PDC activity.
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-17
    Description: Chronic Kidney Disease (CKD) is characterized by organ remodeling and fibrosis due to failed wound repair after on-going or severe injury. Key to this process is the continued activation and presence of matrix-producing renal fibroblasts. In cancer, metabolic alterations help cells to acquire and maintain a malignant phenotype. More recent evidence suggests that something similar occurs in the fibroblast during activation. To support these functions, pro-fibrotic signals released in response to injury induce metabolic reprograming to meet the high bioenergetic and biosynthetic demands of the (myo)fibroblastic phenotype. Fibrogenic signals such as TGF-β1 trigger a rewiring of cellular metabolism with a shift toward glycolysis, uncoupling from mitochondrial oxidative phosphorylation, and enhanced glutamine metabolism. These adaptations may also have more widespread implications with redirection of acetyl-CoA directly linking changes in cellular metabolism and regulatory protein acetylation. Evidence also suggests that injury primes cells to these metabolic responses. In this review we discuss the key metabolic events that have led to a reappraisal of the regulation of fibroblast differentiation and function in CKD.
    Electronic ISSN: 1664-042X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...