ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-10-27
    Description: ErbB-4 is a transmembrane receptor tyrosine kinase that regulates cell proliferation and differentiation. After binding of its ligand heregulin (HRG) or activation of protein kinase C (PKC) by 12-O-tetradecanoylphorbol-13-acetate (TPA), the ErbB-4 ectodomain is cleaved by a metalloprotease. We now report a subsequent cleavage by gamma-secretase that releases the ErbB-4 intracellular domain from the membrane and facilitates its translocation to the nucleus. gamma-Secretase cleavage was prevented by chemical inhibitors or a dominant negative presenilin. Inhibition of gamma-secretase also prevented growth inhibition by HRG. gamma-Secretase cleavage of ErbB-4 may represent another mechanism for receptor tyrosine kinase-mediated signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ni, C Y -- Murphy, M P -- Golde, T E -- Carpenter, G -- CA24071/CA/NCI NIH HHS/ -- CA68485/CA/NCI NIH HHS/ -- DK20593/DK/NIDDK NIH HHS/ -- NS39072/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2179-81. Epub 2001 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679632" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Amyloid Precursor Protein Secretases ; Animals ; Aspartic Acid Endopeptidases ; COS Cells ; Carbamates/pharmacology ; Cell Division/drug effects ; Cell Line ; Cell Membrane/metabolism ; Cell Nucleus/*metabolism ; Cytoplasm/metabolism ; Dipeptides/pharmacology ; Endopeptidases/*metabolism ; Fatty Acids, Unsaturated/pharmacology ; Humans ; Membrane Proteins/genetics/metabolism ; Metalloendopeptidases/metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Neuregulin-1/pharmacology ; Presenilin-1 ; Protease Inhibitors/pharmacology ; Protein Structure, Tertiary ; Receptor, Epidermal Growth Factor/chemistry/*metabolism ; Receptor, ErbB-4 ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; Transcriptional Activation ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-08-26
    Description: In situ hybridization was used to assess total amyloid protein precursor (APP) messenger RNA and the subset of APP mRNA containing the Kunitz protease inhibitor (KPI) insert in 11 Alzheimer's disease (AD) and 7 control brains. In AD, a significant twofold increase was observed in total APP mRNA in nucleus basalis and locus ceruleus neurons but not in hippocampal subicular neurons, neurons of the basis pontis, or occipital cortical neurons. The increase in total APP mRNA in locus ceruleus and nucleus basalis neurons was due exclusively to an increase in APP mRNA lacking the KPI domain. These findings suggest that increased production of APP lacking the KPI domain in nucleus basalis and locus ceruleus neurons may play an important role in the deposition of cerebral amyloid that occurs in AD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palmert, M R -- Golde, T E -- Cohen, M L -- Kovacs, D M -- Tanzi, R E -- Gusella, J F -- Usiak, M F -- Younkin, L H -- Younkin, S G -- 5T32GM07250/GM/NIGMS NIH HHS/ -- AG06656/AG/NIA NIH HHS/ -- MH43444/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1988 Aug 26;241(4869):1080-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuropathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2457949" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*genetics ; Amyloid/*genetics ; Bacteriophage lambda/genetics ; Brain/metabolism ; Cerebral Cortex/metabolism ; *Gene Expression Regulation ; Humans ; Locus Coeruleus/metabolism ; Neurons/metabolism ; Nucleic Acid Hybridization ; Operator Regions, Genetic ; Plasmids ; Protein Precursors/*genetics ; RNA/genetics ; RNA, Complementary ; RNA, Messenger/*genetics/metabolism ; Repressor Proteins/metabolism ; Transcription, Genetic ; Trypsin Inhibitors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-06-13
    Description: Selective lowering of Abeta42 levels (the 42-residue isoform of the amyloid-beta peptide) with small-molecule gamma-secretase modulators (GSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer's disease. To identify the target of these agents we developed biotinylated photoactivatable GSMs. GSM photoprobes did not label the core proteins of the gamma-secretase complex, but instead labelled the beta-amyloid precursor protein (APP), APP carboxy-terminal fragments and amyloid-beta peptide in human neuroglioma H4 cells. Substrate labelling was competed by other GSMs, and labelling of an APP gamma-secretase substrate was more efficient than a Notch substrate. GSM interaction was localized to residues 28-36 of amyloid-beta, a region critical for aggregation. We also demonstrate that compounds known to interact with this region of amyloid-beta act as GSMs, and some GSMs alter the production of cell-derived amyloid-beta oligomers. Furthermore, mutation of the GSM binding site in the APP alters the sensitivity of the substrate to GSMs. These findings indicate that substrate targeting by GSMs mechanistically links two therapeutic actions: alteration in Abeta42 production and inhibition of amyloid-beta aggregation, which may synergistically reduce amyloid-beta deposition in Alzheimer's disease. These data also demonstrate the existence and feasibility of 'substrate targeting' by small-molecule effectors of proteolytic enzymes, which if generally applicable may significantly broaden the current notion of 'druggable' targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678541/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678541/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kukar, Thomas L -- Ladd, Thomas B -- Bann, Maralyssa A -- Fraering, Patrick C -- Narlawar, Rajeshwar -- Maharvi, Ghulam M -- Healy, Brent -- Chapman, Robert -- Welzel, Alfred T -- Price, Robert W -- Moore, Brenda -- Rangachari, Vijayaraghavan -- Cusack, Bernadette -- Eriksen, Jason -- Jansen-West, Karen -- Verbeeck, Christophe -- Yager, Debra -- Eckman, Christopher -- Ye, Wenjuan -- Sagi, Sarah -- Cottrell, Barbara A -- Torpey, Justin -- Rosenberry, Terrone L -- Fauq, Abdul -- Wolfe, Michael S -- Schmidt, Boris -- Walsh, Dominic M -- Koo, Edward H -- Golde, Todd E -- P01 AG020206/AG/NIA NIH HHS/ -- P01 AG020206-010002/AG/NIA NIH HHS/ -- R01 AG017574/AG/NIA NIH HHS/ -- R01 AG017574-08/AG/NIA NIH HHS/ -- R01 AG017574-09/AG/NIA NIH HHS/ -- R01 NS041355/NS/NINDS NIH HHS/ -- R01 NS041355-06A2/NS/NINDS NIH HHS/ -- R01 NS041355-07/NS/NINDS NIH HHS/ -- England -- Nature. 2008 Jun 12;453(7197):925-9. doi: 10.1038/nature07055.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, Florida 32224, USA. kukar.thomas@mayo.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18548070" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/drug therapy/enzymology/metabolism ; Amyloid Precursor Protein Secretases/*antagonists & inhibitors/*metabolism ; Amyloid beta-Protein Precursor/antagonists & ; inhibitors/*chemistry/genetics/*metabolism ; Animals ; Anti-Inflammatory Agents, Non-Steroidal/chemistry/*metabolism/*pharmacology ; Binding Sites/drug effects ; CHO Cells ; Cell Line, Tumor ; Cricetinae ; Cricetulus ; Female ; Humans ; Mice ; Protein Binding/drug effects ; Receptors, Notch/genetics/metabolism ; Substrate Specificity/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1992-02-07
    Description: The 39- to 43-amino acid amyloid beta protein (beta AP), which is deposited as amyloid in Alzheimer's disease, is encoded as an internal peptide that begins 99 residues from the carboxyl terminus of a 695- to 770-amino acid glycoprotein referred to as the amyloid beta protein precursor (beta APP). To clarify the processing that produces amyloid, carboxyl-terminal derivatives of the beta APP were analyzed. This analysis showed that the beta APP is normally processed into a complex set of 8- to 12-kilodalton carboxyl-terminal derivatives. The two largest derivatives in human brain have the entire beta AP at or near their amino terminus and are likely to be intermediates in the pathway leading to amyloid deposition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Estus, S -- Golde, T E -- Kunishita, T -- Blades, D -- Lowery, D -- Eisen, M -- Usiak, M -- Qu, X M -- Tabira, T -- Greenberg, B D -- AG06656/AG/NIA NIH HHS/ -- AG08012/AG/NIA NIH HHS/ -- AG08992/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1992 Feb 7;255(5045):726-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuropathology, Case Western Reserve University, Cleveland, OH 44106.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1738846" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/*biosynthesis ; Amyloid beta-Protein Precursor/chemistry/genetics/*metabolism ; Cell Line ; Cell Membrane/chemistry ; Cerebral Cortex/chemistry ; Glycosylation ; Humans ; Immunoblotting ; Immunosorbent Techniques ; Molecular Weight ; Peptide Fragments/chemistry/isolation & purification/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1992-10-02
    Description: The 4-kilodalton (39 to 43 amino acids) amyloid beta protein (beta AP), which is deposited as amyloid in the brains of patients with Alzheimer's diseases, is derived from a large protein, the amyloid beta protein precursor (beta APP). Human mononuclear leukemic (K562) cells expressing a beta AP-bearing, carboxyl-terminal beta APP derivative released significant amounts of a soluble 4-kilodalton beta APP derivative essentially identical to the beta AP deposited in Alzheimer's disease. Human neuroblastoma (M17) cells transfected with constructs expressing full-length beta APP and M17 cells expressing only endogenous beta APP also released soluble 4-kilodalton beta AP, and a similar, if not identical, fragment was readily detected in cerebrospinal fluid from individuals with Alzheimer's disease and normal individuals. Thus cells normally produce and release soluble 4-kilodalton beta AP that is essentially identical to the 4-kilodalton beta AP deposited as insoluble amyloid fibrils in Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shoji, M -- Golde, T E -- Ghiso, J -- Cheung, T T -- Estus, S -- Shaffer, L M -- Cai, X D -- McKay, D M -- Tintner, R -- Frangione, B -- AG05891/AG/NIA NIH HHS/ -- AG06656/AG/NIA NIH HHS/ -- AR02594/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Oct 2;258(5079):126-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Gunma University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439760" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*cerebrospinal fluid ; Amino Acid Sequence ; Amyloid beta-Peptides/*biosynthesis ; Amyloid beta-Protein Precursor/metabolism ; Animals ; Base Sequence ; Cell Line ; Immunoblotting ; Leukemia, Myeloid/*metabolism ; Molecular Sequence Data ; Neuroblastoma/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1992-02-07
    Description: The approximately 120-kilodalton amyloid beta protein precursor (beta APP) is processed into a complex set of 8- to 12-kilodalton carboxyl-terminal derivatives that includes potentially amyloidogenic forms with the approximately 4-kilodalton amyloid beta protein (beta AP) at or near their amino terminus. In order to determine if these derivatives are processed in a secretory pathway or by the endosomal-lysosomal system, (i) deletion mutants that produce the normal set of carboxyl-terminal derivatives and shortened secreted derivatives were analyzed and (ii) the effect of inhibitors of endosomal-lysosomal processing was examined. In the secretory pathway, cleavage of the beta APP occurs at a single site within the beta AP to generate one secreted derivative and one nonamyloidogenic carboxyl-terminal fragment, whereas, in the endosomal-lysosomal system, a complex set of carboxyl-terminal derivatives is produced that includes the potentially amyloidogenic forms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Golde, T E -- Estus, S -- Younkin, L H -- Selkoe, D J -- Younkin, S G -- New York, N.Y. -- Science. 1992 Feb 7;255(5045):728-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuropathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1738847" target="_blank"〉PubMed〈/a〉
    Keywords: Ammonium Chloride/pharmacology ; Amyloid/*biosynthesis ; Amyloid beta-Protein Precursor/genetics/*metabolism ; Base Sequence ; Cell Line ; Endopeptidases/metabolism ; Humans ; Leupeptins/pharmacology ; Lysosomes/metabolism ; Molecular Sequence Data ; Mutagenesis ; Peptide Fragments/*metabolism/secretion ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Golde, Todd E -- Kukar, Thomas L -- K99 AG032362/AG/NIA NIH HHS/ -- K99 AG032362-01A1/AG/NIA NIH HHS/ -- R00 AG032362/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2009 May 1;324(5927):603-4. doi: 10.1126/science.1174267.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mayo Clinic, College of Medicine, Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA. tgolde@mayo.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19407192" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*drug therapy/metabolism ; Amyloid Precursor Protein Secretases/antagonists & ; inhibitors/chemistry/*metabolism ; Amyloid beta-Peptides/*metabolism ; Amyloid beta-Protein Precursor/*metabolism ; Animals ; Endopeptidases/chemistry/*metabolism ; Humans ; Mice ; Protease Inhibitors/*pharmacology/therapeutic use/toxicity ; Protein Subunits/chemistry/metabolism ; Receptors, Notch/antagonists & inhibitors/metabolism ; Signal Transduction/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-01-22
    Description: The 4-kilodalton amyloid beta protein (A beta), which forms fibrillar deposits in Alzheimer's disease (AD), is derived from a large protein referred to as the amyloid beta protein precursor (beta APP). Human neuroblastoma (M17) cells transfected with constructs expressing wild-type beta APP or a mutant, beta APP delta NL, recently linked to familial AD were compared. After continuous metabolic labeling for 8 hours, cells expressing beta APP delta NL had five times more of an A beta-bearing, carboxyl terminal, beta APP derivative than cells expressing wild-type beta APP and they released six times more A beta into the medium. Thus this mutant beta APP may cause AD because its processing is altered in a way that releases increased amounts of A beta.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cai, X D -- Golde, T E -- Younkin, S G -- AG06656/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 22;259(5094):514-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuropathology, Case Western Reserve University, Cleveland, OH 44106.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8424174" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/genetics/metabolism ; Amino Acid Sequence ; Amyloid beta-Peptides/*biosynthesis/genetics ; Amyloid beta-Protein Precursor/*genetics/metabolism ; Base Sequence ; Cloning, Molecular ; Humans ; Molecular Sequence Data ; *Mutagenesis, Site-Directed ; Neuroblastoma ; Oligodeoxyribonucleotides ; Polymerase Chain Reaction/methods ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1994-05-27
    Description: Normal processing of the amyloid beta protein precursor (beta APP) results in secretion of a soluble 4-kilodalton protein essentially identical to the amyloid beta protein (A beta) that forms insoluble fibrillar deposits in Alzheimer's disease. Human neuroblastoma (M17) cells transfected with constructs expressing wild-type beta APP or the beta APP717 mutants linked to familial Alzheimer's disease were compared by (i) isolation of metabolically labeled 4-kilodalton A beta from conditioned medium, digestion with cyanogen bromide, and analysis of the carboxyl-terminal peptides released, or (ii) analysis of the A beta in conditioned medium with sandwich enzyme-linked immunosorbent assays that discriminate A beta 1-40 from the longer A beta 1-42. Both methods demonstrated that the 4-kilodalton A beta released from wild-type beta APP is primarily but not exclusively A beta 1-40. The beta APP717 mutations, which are located three residues carboxyl to A beta 43, consistently caused a 1.5- to 1.9-fold increase in the percentage of longer A beta generated. Long A beta (for example, A beta 1-42) forms insoluble amyloid fibrils more rapidly than A beta 1-40. Thus, the beta APP717 mutants may cause Alzheimer's disease because they secrete increased amounts of long A beta, thereby fostering amyloid deposition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, N -- Cheung, T T -- Cai, X D -- Odaka, A -- Otvos, L Jr -- Eckman, C -- Golde, T E -- Younkin, S G -- AG06656/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1994 May 27;264(5163):1336-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Discovery Research Division, Takeda Chemical Industries, Ltd., Ibaraki, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8191290" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/genetics ; Amyloid beta-Peptides/chemistry/*secretion ; Amyloid beta-Protein Precursor/chemistry/genetics/*metabolism ; Culture Media, Conditioned ; Enzyme-Linked Immunosorbent Assay ; Humans ; *Mutation ; Neuroblastoma ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-05-25
    Description: Cramer et al. (Reports, 23 March 2012, p. 1503; published online 9 February 2012) demonstrates short-term bexarotene treatment clearing preexisting beta-amyloid deposits from the brains of APP/PS1DeltaE9 mice with low amyloid burden, providing a rationale for repurposing this anticancer agent as an Alzheimer's disease (AD) therapeutic. Using a nearly identical treatment regimen, we were unable to detect any evidence of drug efficacy despite demonstration of target engagement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Price, Ashleigh R -- Xu, Guilian -- Siemienski, Zoe B -- Smithson, Lisa A -- Borchelt, David R -- Golde, Todd E -- Felsenstein, Kevin M -- New York, N.Y. -- Science. 2013 May 24;340(6135):924-d. doi: 10.1126/science.1234089.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida College of Medicine, 1275 Center Drive, Gainesville, FL 32610, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704553" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*drug therapy/*metabolism ; Amyloid beta-Peptides/*metabolism ; Animals ; Apolipoproteins E/*metabolism ; Brain/*metabolism ; Male ; Tetrahydronaphthalenes/*pharmacology/*therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...