ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-07-01
    Print ISSN: 0017-467X
    Electronic ISSN: 1745-6584
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-07-18
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-01
    Print ISSN: 0098-3004
    Electronic ISSN: 1873-7803
    Topics: Geosciences , Computer Science
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: This study presents the first direct comparison of variations in seasonal GWS derived from GRACE TWS and simulated SM with GW-level measurements in a semiarid region. Results showed that variations in GWS and SM are the main sources controlling TWS changes over the High Plains, with negligible storage changes from surface water, snow, and biomass. Seasonal variations in GRACE TWS compare favorably with combined GWS from GW-level measurements (total 2,700 wells, average 1,050 GW-level measurements per season) and simulated SM from the Noah land surface model (R = 0.82, RMSD = 33 mm). Estimated uncertainty in seasonal GRACE-derived TWS is 8 mm, and estimated uncertainty in TWS changes is 11 mm. Estimated uncertainty in SM changes is 11 mm and combined uncertainty for TWS-SM changes is 15 mm. Seasonal TWS changes are detectable in 7 out of 9 monitored periods and maximum changes within a year (e.g. between winter and summer) are detectable in all 5 monitored periods. Grace-derived GWS calculated from TWS-SM generally agrees with estimates based on GW-level measurements (R = 0.58, RMSD = 33 mm). Seasonal TWS-SM changes are detectable in 5 out of the 9 monitored periods and maximum changes are detectable in all 5 monitored periods. Good correspondence between GRACE data and GW-level measurements from the intensively monitored High Plains aquifer validates the potential for using GRACE TWS and simulated SM to monitor GWS changes and aquifer depletion in semiarid regions subjected to intensive irrigation pumpage. This method can be used to monitor regions where large-scale aquifer depletion is ongoing, and in situ measurements are limited, such as the North China Plain or western India. This potential should be enhanced by future advances in GRACE processing, which will improve the spatial and temporal resolution of TWS changes, and will further increase applicability of GRACE data for monitoring GWS.
    Keywords: Geophysics
    Type: Geophysical Research Letters; Volume 34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on groundwater table observations, and with estimates of total water storage variations from the GRACE satellites mission. Due to the difficulty in estimating area-averaged seasonal groundwater storage variations from point observations of groundwater levels, it is uncertain whether WaterGAP underestimates actual variations or not. We conclude that WaterGAP possibly overestimates water withdrawals in the High Plains aquifer where impact of human water use on water storage is readily discernible based on WaterGAP calculations and groundwater observations. No final conclusion can be drawn regarding the possibility of monitoring water withdrawals in the High Plains aquifer using GRACE. For the less intensively irrigated Mississippi basin, observed and modeled seasonal groundwater storage reveals a discernible impact of water withdrawals in the basin, but this is not the case for total water storage such that water withdrawals at the scale of the whole Mississippi basin cannot be monitored by GRACE.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.5764.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...