ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2009-07-02
    Description: Osteopontin (OPN), a multifunctional acidic glycoprotein, expressed by osteoblasts within the endosteal region of the bone marrow (BM) suppresses the proliferation of hemopoietic stem and progenitor cells and also regulates their lodgment within the BM after transplantation. Herein we demonstrate that OPN cleavage fragments are the most abundant forms of this protein within the BM. Studies aimed to determine how hemopoietic stem cells (HSCs) interact with OPN revealed for the first time that murine and human HSCs express α9β1 integrin. The N-terminal thrombin cleavage fragment of OPN through its binding to the α9β1 and α4β1 integrins plays a key role in the attraction, retention, regulation, and release of hemopoietic stem and progenitor cells to, in, and from their BM niche. Thrombin-cleaved OPN (trOPN) acts as a chemoattractant for stem and progenitor cells, mediating their migration in a manner that involves interaction with α9β1 and α4β1 integrins. In addition, in the absence of OPN, there is an increased number of white blood cells and, specifically, stem and progenitor cells in the peripheral circulation.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-11-16
    Description: Osteoblasts are a key cellular component of the hemopoietic stem cell (HSC) niche and directly regulate the HSC pool. Molecules synthesised by osteoblasts both promote or inhibit HSC proliferation. Osteopontin (Opn) is an osteoblast produced, RGD containing protein with roles in cell adhesion and migration. Until recently, the role of Opn in hemopoiesis was seen as restricted to the regulation of bone turnover. However, from analysis of hemopoiesis in the Opn null mouse, we have demonstrated that Opn plays a critical role in regulating the HSC pool. Furthermore Opn is critical in trans-marrow migration and lodgement of HSC within the BM after transplantation. When added to in vitro HSC cultures, exogenous thrombin-cleaved Opn also inhibits cell proliferation and potently suppresses HSC differentiation. We have now demonstrated that this interaction occurs in an RGD-independent manner via the cryptic SVVYGLR epitope revealed on the N-terminal fragment of Opn following thrombin cleavage. This epitope has previously been shown to bind to α4β1 and α9β1. HSC are known to express α4β1, but we have now shown that within the HSC pool this occurs in a differential manner, mimicking that of CD38, with more committed CD34+CD38+ cord blood progenitors having the highest levels of expression. In addition, we have shown the previously unrecognised characteristic of human marrow and cord blood HSC, the expression of α9β1, which also occurs in a differential manner, but mimicking CD34. Expression of α9β1 is highest on cord blood CD34+CD38− cells, a population highly enriched for HSC. Using the synthetic SVVYGLR peptide in culture, we re-capitulated the thrombin-cleaved Opn induced suppression of HSC differentiation in a dose dependent manner. Antibody blocking experiments demonstrated that binding to this peptide was occurring through both α4β1 and α9β1. In contrast, suppression of HSC proliferation and differentiation did not occur through the upstream alternate α4β1 binding site. Furthermore, we have now demonstrated endogenous binding of Opn to α4β1 and α9β1 to cord blood HSC in vivo. Together, these data provide strong evidence that Opn is an important component of the HSC niche which acts as a physiological negative regulator. Furthermore, our studies identify the previously unrecognised characteristic of HSC, the expression of α9β1, which together with α4β1 provides two receptors on HSC with differing expression signatures and potentially a mechanism for fine tunning the physiological effects of Opn.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...