ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge Univ. Press
    Call number: M 13.0143
    Description / Table of Contents: Contents: 1. Preliminary statistics; 2. Direct, linear, and iterative-linear inverse methods; 3. Monte Carlo methods; 4. Simulated annealing methods; 5. Genetic algorithms; 6. Other global optimization methods; 7. Geophysical applications of SA and GA; 8. Uncertainty estimation
    Type of Medium: Monograph available for loan
    Pages: VII, 289 S. : Ill., graph. Darst.
    Edition: 2nd ed.
    ISBN: 9781107011908
    Classification:
    Geophysical Deep Sounding
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Dordrecht [u.a.] : Kluwer
    Associated volumes
    Call number: 5/14931
    In: Modern approaches in geophysics
    Type of Medium: Monograph available for loan
    Pages: VII, 178 S.
    ISBN: 0792300386
    Series Statement: Modern approaches in geophysics 8
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 44 (1996), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: The posterior probability density function (PPD), σ(m|dobs), of earth model m, where dobs are the measured data, describes the solution of a geophysical inverse problem, when a Bayesian inference model is used to describe the problem. In many applications, the PPD is neither analytically tractable nor easily approximated and simple analytic expressions for the mean and variance of the PPD are not available. Since the complete description of the PPD is impossible in the highly multi-dimensional model space of many geophysical applications, several measures such as the highest posterior density regions, marginal PPD and several orders of moments are often used to describe the solutions. Calculation of such quantities requires evaluation of multidimensional integrals. A faster alternative to enumeration and blind Monte-Carlo integration is importance sampling which may be useful in several applications. Thus how to draw samples of m from the PPD becomes an important aspect of geophysical inversion such that importance sampling can be used in the evaluation of these multi-dimensional integrals. Importance sampling can be carried out most efficiently by a Gibbs' sampler (GS). We also introduce a method which we called parallel Gibbs' sampler (PGS) based on genetic algorithms (GA) and show numerically that the results from the two samplers are nearly identical.We first investigate the performance of enumeration and several sampling based techniques such as a GS, PGS and several multiple maximum a posteriori (MAP) algorithms for a simple geophysical problem of inversion of resistivity sounding data. Several non-linear optimization methods based on simulated annealing (SA), GA and some of their variants can be devised which can be made to reach very close to the maximum of the PPD. Such MAP estimation algorithms also sample different points in the model space. By repeating these MAP inversions several times, it is possible to sample adequately the most significant portion(s) of the PPD and all these models can be used to construct the marginal PPD, mean) covariance, etc. We observe that the GS and PGS results are identical and indistinguishable from the enumeration scheme. Multiple MAP algorithms slightly underestimate the posterior variances although the correlation values obtained by all the methods agree very well. Multiple MAP estimation required 0.3% of the computational effort of enumeration and 40% of the effort of a GS or PGS for this problem. Next, we apply GS to the inversion of a marine seismic data set to quantify uncertainties in the derived model, given the prior distribution determined from several common midpoint gathers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Geophysical prospecting 46 (1998), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: We show that it is possible to estimate the background velocity for prestack depth migration in 2D laterally varying media using a non-linear optimization technique called very fast simulated annealing (VFSA). We use cubic splines in the velocity model parametrization and make use of either successive pairs of shot gathers or several constant-offset sections as input data for the inversion. A Kirchhoff summation scheme based on first-arrival traveltimes is used to migrate/model the input data during the velocity analysis. We evaluate and compare two different measures of error. The first is defined in the recorded data or (x,t) domain and is based on a reflection-tomography criterion. The second is defined in the migrated data or (x,z) domain and is based on a migration-misfit criterion. Depth relaxation is used to improve the convergence and quality of the velocity analysis while simultaneously reducing the computational cost. Further, we show that by coarse sampling in the offset domain the method is still robust.Our non-linear optimization approach to migration velocity analysis is evaluated for both synthetic and real seismic data. For the velocity-analysis method based on the reflection-tomography criterion, traveltimes do not have to be picked. Similarly, the migration-misfit criterion does not require that depth images be manually compared. Interpreter intervention is required only to restrict the search space used in the velocity-analysis problem. Extension of the proposed schemes to 3D models is straightforward but practical only for the fastest available computers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 6 (1988), S. 0 
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: An expanding spread seismic profile at the central northern Jan Mayen Ridge, ESP-5, has yielded a crustal seismic velocity distribution which is similar to observations from the thinned continental crust at the Norwegian continental margin. The profile reveals a post-early Eocene sedimentary sequence, about 1. 5 km thick, overlying 1 km of volcanic extrusives and interbedded sediments. Below, there are about 3 km of pre-opening sediments above the seismic basement. The results indicate that the main ridge block is underlain by a thinned crust, possibly only 13.5 km thick. The results are compatible with a continental nature for the main ridge complex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 108 (1992), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The seismic waveform inversion problem is usually cast into the framework of Bayesian statistics in which prior information on the model parameters is combined with the data and physics of the forward problem to estimate the a posteriori probability density (PPD) in model space. The PPD is a function of an objective or fitness function computed from the observed and synthetic data. In general, the PPD or the fitness function is multimodal and its shape is unknown. Global optimization methods such as simulated annealing (SA) and genetic algorithms (GA) do not require that the shape of the fitness function be known. In this paper, we investigate GA to rapidly sample the most significant portion or portions of the PPD, when very little prior information is available. First, we use a simple three operator (selection, crossover and mutation) GA acting on a randomly chosen finite population of haploid binary coded models. We use plane wave transformed synthetic seismic data and a normalized cross-correlation function [E(m)] in the frequency domain as a fitness function. A moderate value of crossover probability, a low value of mutation probability, a high value of update probability and a proper population size are required to reach very close to the global maximum of the fitness function. Next, with an attempt to accelerate convergence we show that the concepts from simulated annealing can be used in stretching of the fitness function, i.e., we use exp [E(m)/T] rather than E(m) as the fitness function, where T is a control parameter analogous to temperature in simulated annealing. By a schemata analysis, we show that at low temperatures, schemata with above average fitness values are reproduced in large numbers causing a much more rapid convergence of the algorithm. A high value of temperature T assigns nearly equal selection probability to most of the schemata and thus retains diversity among the members of the population. Thus a GA with a step function type cooling schedule (very high temperature in the beginning followed by rapid cooling to a very low temperature) improves the performance dramatically: high values of the fitness function are obtained rapidly using only half as many models as would be required by a conventional GA. Similar performance could also be achieved by first using a high mutation probability and then decreasing the mutation probability to a very low value, while retaining the same low temperature throughout.We also address the problem of ‘genetic drift’ which causes the finite GAs to converge to one peak or the other when the algorithm is applied to a highly multimodal fitness function with several peaks of nearly the same height. A parallel genetic algorithm based on the concept of ‘punctuated equilibria’ is implemented to circumvent the problem. We run several GAs each with a finite subpopulation in parallel and collect many good models from each one of these runs. These are then used to grasp the most significant portion(s) of the PPD in model space. We then compute the weighted mean model and use the derived good models to estimate uncertainty in the derived model parameters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 43 (1995), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: The inversion of resistivity profiling data involves estimation of the spatial distribution of resistivities and thicknesses of rock layers from the apparent resistivity data values measured in the field as a function of electrode separation. The drawbacks of using traditional curve-matching techniques to solve this inverse problem have been overcome by iterative linear techniques but these require good starting models even if the shape of the causative body is asssumed known. In spite of the recent developments in inversion techniques, no robust method exists for the inversion of resistivity profiling data for the simple model of dikes and spheres which are the classical models of geophysical prospecting.We apply three different non-linear inversion schemes to invert synthetic resistivity profiling data for the classical models embedded in a uniform matrix of contrasting resistivity. The three non-linear algorithms used are called the Metropolis simulated annealing (SA), very fast simulated annealing (VFSA) and a genetic algorithm (GA). We compare the performance of the three algorithms using synthetic data for an outcropping vertical dike model. Although all three methods were successful in obtaining optimal solutions for arbitrary starting models, VFSA proved to be computationally the most efficient.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Geophysical prospecting 48 (2000), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: Artificial neural systems have been used in a variety of problems in the fields of science and engineering. Here we describe a study of the applicability of neural networks to solving some geophysical inverse problems. In particular, we study the problem of obtaining formation resistivities and layer thicknesses from vertical electrical sounding (VES) data and that of obtaining 1D velocity models from seismic waveform data. We use a two-layer feedforward neural network (FNN) that is trained to predict earth models from measured data. Part of the interest in using FNNs for geophysical inversion is that they are adaptive systems that perform a non-linear mapping between two sets of data from a given domain. In both of our applications, we train FNNs using synthetic data as input to the networks and a layer parametrization of the models as the network output. The earth models used for network training are drawn from an ensemble of random models within some prespecified parameter limits. For network training we use the back-propagation algorithm and a hybrid back-propagation–simulated-annealing method for the VES and seismic inverse problems, respectively. Other fundamental issues for obtaining accurate model parameter estimates using trained FNNs are the size of the training data, the network configuration, the description of the data and the model parametrization. Our simulations indicate that FNNs, if adequately trained, produce reasonably accurate earth models when observed data are input to the FNNs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-03-01
    Description: Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Society of Exploration Geophysicists (SEG)
    Publication Date: 2012-03-01
    Description: We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...