ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-06
    Description: As the second most populous country and third fastest growing economy, India has emerged as a global economic power. As such, its emissions of greenhouse and ozone-depleting gases are of global significance. However, unlike neighbouring China, the Indian sub-continent is very poorly monitored by atmospheric measurement networks. India's halocarbon emissions, here defined as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs) and chlorocarbons, are not well-known. Previous measurements from the region have been obtained at observatories many hundreds of kilometres from source regions, or at high altitudes, limiting their value for the estimation of regional emission rates. Given the projected rapid growth in demand for refrigerants and solvents in India, emission estimates of these halocarbons are urgently needed to provide a benchmark against which future changes can be evaluated. In this study, we report atmospheric-measurement-derived halocarbon emissions from India. With the exception of dichloromethane, these top-down estimates are the first for India's halocarbons. Air samples were collected at low altitude during an aircraft campaign in June and July 2016, and emissions were derived from measurements of these samples using an inverse modelling framework. These results were evaluated to assess India's progress in phasing out ozone-depleting substances under the Montreal Protocol. India's combined CFC emissions are estimated to be 54 (27–86) Tg CO2 eq. yr−1 (5th and 95th confidence intervals are shown in parentheses). HCFC-22 emissions of 7.8 (6.0–9.9) Gg yr−1 are of similar magnitude to emissions of HFC-134a (8.2 (6.1–10.7) Gg yr−1). We estimate India's HFC-23 emissions to be 1.2 (0.9–1.5) Gg yr−1, and our results are consistent with resumed venting of HFC-23 by HCFC-22 manufacturers following the discontinuation of funding for abatement under the Clean Development Mechanism. We report small emissions of HFC-32 and HFC-143a and provide evidence to suggest that HFC-32 emissions were primarily due to fugitive emissions during manufacturing processes. A lack of significant correlation among HFC species and the small emissions derived for HFC-32 and HFC-143a indicate that in 2016, India's use of refrigerant blends R-410A, R-404A and R-507A was limited, despite extensive consumption elsewhere in the world. We also estimate emissions of the regulated chlorocarbons carbon tetrachloride and methyl chloroform from northern and central India to be 2.3 (1.5–3.4) and 0.07 (0.04–0.10) Gg yr−1 respectively. While the Montreal Protocol has been successful in reducing emissions of many ozone-depleting substances, growth in the global emission rates of the unregulated very short-lived substances poses an ongoing threat to the recovery of the ozone layer. Emissions of dichloromethane are found to be 96.5 (77.8–115.6) Gg yr−1, and our estimate suggests a 5-fold increase in emissions since the last estimate derived from atmospheric data in 2008. We estimate perchloroethene emissions from India and chloroform emissions from northern–central India to be 2.9 (2.5–3.3) and 32.2 (28.3–37.1) Gg yr−1 respectively. Given the rapid growth of India's economy and the likely increase in demand for halocarbons such as HFCs, the implementation of long-term atmospheric monitoring in the region is urgently required. Our results provide a benchmark against which future changes to India's halocarbon emissions may be evaluated.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-22
    Description: While the Montreal Protocol has been successful in reducing emissions of many long-lived ozone-depleting substances, growth in the global emission rates of unregulated very short-lived substances (VSLS) poses a potential threat to the recovery of the ozone layer. The sources of these VSLS are not well-constrained, with major source regions poorly monitored by existing measurement networks. Given India's rapidly growing economy, its emissions of both regulated chlorocarbons and unregulated VSLS chlorocarbons are suspected to have global significance. Furthermore, VSLS from the Asian monsoon regions have a greater impact on ozone-depletion than those emitted elsewhere due to the ability of monsoon systems to rapidly transport pollutants to the lower stratosphere. Previous atmospheric measurements of chlorocarbons from the Indian sub-continent are scarce. Here we present a new set of observations, derived from flask samples collected during a 2-month aircraft campaign in India and use these measurements to infer India's chlorocarbon emissions. We show that emissions of carbon tetrachloride from northern and central India (2.3 (1.5–3.4) Gg yr−1), are likely due to inadvertent production and release during the manufacture of chloromethanes (specifically dichloromethane and chloroform) and account for approximately 7 % of the global total. Emissions of methyl chloroform from the same region were estimated to be 0.07 (0.04–0.10) Gg yr−1 which account for less than 5 % of remaining global emissions. We used a population scaling to estimate India's emissions of the very short-lived chlorocarbons dichloromethane, perchloroethene and chloroform, which were estimated to be 69.2 (55.8–82.9) Gg yr−1, 2.9 (2.5–3.3) Gg yr−1 and 25.7 (21.6–29.9) Gg yr−1 respectively. In the case of dichloromethane, our estimate is consistent with a 3-fold increase in emissions since the last estimate derived from atmospheric data in 2008.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-04-30
    Description: We reconstruct atmospheric abundances of the potent greenhouse gas c-C4F8 (perfluorocyclobutane, perfluorocarbon PFC-318) from measurements of in situ, archived, firn, and aircraft air samples with precisions of ~ 1–2 % reported on the SIO-14 gravimetric calibration scale. Combined with inverse methods, we found near zero atmospheric abundances from the early 1900s to the early 1960s, after which they rose sharply, reaching 1.66 ppt (parts per trillion dry-air mole fraction) in 2017. Global c-C4F8 emissions rose from near zero in the 1960s to ~ 1.2 Gg yr−1 in the late 1970s to late 1980s, then declined to ~ 0.8 Gg yr−1 in the mid-1990s to early 2000s, followed by a rise since the early 2000s to ~ 2.2 Gg yr−1 in 2017. These emissions are significantly larger than inventory based emission estimates. Estimated emissions from eastern Asia rose from 0.36 Gg yr−1 in 2010 to 0.73 Gg yr−1 in 2016 and 2017, 31 % of global emissions, mostly from eastern China. We estimate emissions of 0.14 Gg yr−1 from Northern and Central India in 2016 and find evidence for significant emissions from Russia. In contrast, recent emissions from North Western Europe and Australia are estimated to be small (≤ 1 % each). We conclude that emissions from China, India and Russia are likely related to production of polytetrafluoroethylene (PTFE, “Teflon”) and other fluoropolymers that are based on the pyrolysis of hydrochlorofluorocarbon HCFC-22 (CHClF2) in which c-C4F8 is a known by-product. The semiconductor sector, where c-C4F8 is used, is estimated to be a small source. Without an obvious correlation with population density, incineration of waste containing fluoropolymers is probably a minor source, and we find no evidence of emissions from electrolytic production of aluminum in Australia. While many possible emissive uses of c-C4F8 are known, the start of significant emissions may well be related to the advent of commercial PTFE production in 1947. Process controls or abatement to reduce c-C4F8 by-product were probably not in place in the early decades, explaining the increase in emissions. With the advent of by-product reporting requirements to the United Nations Framework Convention on Climate Change (UNFCCC) in the 1990s, concern about climate change and product stewardship, abatement, and perhaps the collection of c-C4F8 by-product for use in the semiconductor industry where it can be easily abated, it is conceivable that emissions in developed countries were stabilized and then reduced, explaining the observed emission reduction in the 1980s and 1990s. Concurrently, production of PTFE in China began to increase rapidly. Without emission reduction requirements, it is plausible that global emissions today are dominated by China and other developing countries, in agreement with our analysis. We predict that c-C4F8 emissions will continue to rise and that c-C4F8 will become the second most important emitted PFC in terms of CO2-equivalent emissions within a year or two. The 2017 radiative forcing of c-C4F8 (0.52 mW m−2) is small but emissions of c-C4F8 and other PFCs, due to their very long atmospheric lifetimes, essentially permanently alter Earth's radiative budget and should be reduced. Significant emissions outside of the investigated regions clearly show that observational capabilities and reporting requirements need to be improved to understand global and country scale emissions of PFCs and other synthetic greenhouse gases and ozone depleting substances.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-09
    Description: As the second most populous country and third fastest growing economy, India has emerged as a global economic power. As such, its emissions of greenhouse and ozone-depleting gases are of global significance. However, unlike neighbouring China, the Indian sub-continent is very poorly monitored by existing measurement networks. Of the greenhouse/ozone-depleting gases, India's emissions of synthetic halocarbons (here defined as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs)) are not well-known. Previous measurements from the region have been obtained at observatories many hundreds of miles from source regions, or at high altitudes, limiting their value for the estimation of regional emission rates. Given the projected rapid growth in demand for refrigerants in India, emission estimates of these halocarbons are urgently needed, to provide a benchmark against which future changes can be evaluated. In this study, we report the first atmospheric-measurement derived emissions of the ozone-depleting CFCs and HCFCs, and potent greenhouse gas HFCs from India. Air samples were collected at low-altitude during a 2-month aircraft campaign between June and July 2016. Emissions were derived from measurements of these samples using an inverse modelling framework and evaluated to assess India's progress in phasing out ozone-depleting substances (ODS) under the Montreal Protocol. Our CFC estimates show that India contributed 52 (26–83) Tg CO2eq yr−1, which were 7 (4–12) % of global emissions in 2016. HCFC-22 emissions at 7.8 (6.0–9.9) Gg yr−1 were of similar magnitude to emissions of HFC-134a (8.2 (6.1–10.7) Gg yr−1), suggesting that India used a range of HCFC and HFC refrigerants in 2016. We estimated India's HFC-23 emissions to be 1.2 (0.9–1.5) Gg yr−1 and our results are consistent with resumed venting of HFC-23 by HCFC-22 manufacturers following the discontinuation of funding for abatement under the Clean Development Mechanism. We report small emissions of HFC-32 and HFC-143a and provide evidence that HFC-32 emissions were primarily due to fugitive emissions during manufacturing processes. Lack of significant correlation among HFC species and the small emissions derived for HFC-32 and HFC-143a indicate that in 2016, India's use of refrigerant blends R-410A, R-404A and R-507A was limited, despite extensive consumption elsewhere in the world.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-14
    Description: We reconstruct atmospheric abundances of the potent greenhouse gas c-C4F8 (perfluorocyclobutane, perfluorocarbon PFC-318) from measurements of in situ, archived, firn, and aircraft air samples with precisions of ∼1 %–2 % reported on the SIO-14 gravimetric calibration scale. Combined with inverse methods, we found near-zero atmospheric abundances from the early 1900s to the early 1960s, after which they rose sharply, reaching 1.66 ppt (parts per trillion dry-air mole fraction) in 2017. Global c-C4F8 emissions rose from near zero in the 1960s to 1.2±0.1 (1σ) Gg yr−1 in the late 1970s to late 1980s, then declined to 0.77±0.03 Gg yr−1 in the mid-1990s to early 2000s, followed by a rise since the early 2000s to 2.20±0.05 Gg yr−1 in 2017. These emissions are significantly larger than inventory-based emission estimates. Estimated emissions from eastern Asia rose from 0.36 Gg yr−1 in 2010 to 0.73 Gg yr−1 in 2016 and 2017, 31 % of global emissions, mostly from eastern China. We estimate emissions of 0.14 Gg yr−1 from northern and central India in 2016 and find evidence for significant emissions from Russia. In contrast, recent emissions from northwestern Europe and Australia are estimated to be small (≤1 % each). We suggest that emissions from China, India, and Russia are likely related to production of polytetrafluoroethylene (PTFE, “Teflon”) and other fluoropolymers and fluorochemicals that are based on the pyrolysis of hydrochlorofluorocarbon HCFC-22 (CHClF2) in which c-C4F8 is a known by-product. The semiconductor sector, where c-C4F8 is used, is estimated to be a small source, at least in South Korea, Japan, Taiwan, and Europe. Without an obvious correlation with population density, incineration of waste-containing fluoropolymers is probably a minor source, and we find no evidence of emissions from electrolytic production of aluminum in Australia. While many possible emissive uses of c-C4F8 are known and though we cannot categorically exclude unknown sources, the start of significant emissions may well be related to the advent of commercial PTFE production in 1947. Process controls or abatement to reduce the c-C4F8 by-product were probably not in place in the early decades, explaining the increase in emissions in the 1960s and 1970s. With the advent of by-product reporting requirements to the United Nations Framework Convention on Climate Change (UNFCCC) in the 1990s, concern about climate change and product stewardship, abatement, and perhaps the collection of c-C4F8 by-product for use in the semiconductor industry where it can be easily abated, it is conceivable that emissions in developed countries were stabilized and then reduced, explaining the observed emission reduction in the 1980s and 1990s. Concurrently, production of PTFE in China began to increase rapidly. Without emission reduction requirements, it is plausible that global emissions today are dominated by China and other developing countries. We predict that c-C4F8 emissions will continue to rise and that c-C4F8 will become the second most important emitted PFC in terms of CO2-equivalent emissions within a year or two. The 2017 radiative forcing of c-C4F8 (0.52 mW m−2) is small but emissions of c-C4F8 and other PFCs, due to their very long atmospheric lifetimes, essentially permanently alter Earth's radiative budget and should be reduced. Significant emissions inferred outside of the investigated regions clearly show that observational capabilities and reporting requirements need to be improved to understand global and country-scale emissions of PFCs and other synthetic greenhouse gases and ozone-depleting substances.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-12
    Description: Perfluorocarbons (PFCs) are amongst the most potent greenhouse gases listed under the United Nations Framework Convention on Climate Change (UNFCCC). With atmospheric lifetimes on the order of thousands to tens of thousands of years, PFC emissions represent a permanent alteration to the global atmosphere on human timescales. While the industries responsible for the vast majority of these emissions – aluminium smelting and semi-conductor manufacturing – have made efficiency improvements and introduced abatement measures, the global mean mole fractions of three PFCs, namely tetrafluoromethane (CF4, PFC-14), hexafluoroethane (C2F6, PFC-116) and octafluoropropane (C3F8, PFC-218), continue to grow. In this study, we update baseline growth rates using in situ high-frequency measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) and, using data from four European stations, estimate PFC emissions for northwest Europe. The global growth rate of CF4 decreased from 1.3 ppt yr−1 in 1979 to 0.6 ppt yr−1 around 2010 followed by a renewed steady increase to 0.9 ppt yr−1 in 2019. For C2F6, the growth rate grew to a maximum of 0.125 ppt yr−1 around 1999, followed by a decline to a minimum of 0.075 ppt yr−1 in 2009, followed by weak growth thereafter. The C3F8 growth rate was around 0.007 ppt yr−1 until the early 1990s and then quickly grew to a maximum of 0.03 ppt yr−1 in 2003–2004. Following a period of decline until 2012 to 0.015 ppt yr−1, the growth rate slowly increased again to ∼ 0.017 ppt yr−1 in 2019. We used an inverse modelling framework to infer PFC emissions for northwest Europe. No statistically significant trend in regional emissions was observed for any of the PFCs assessed. For CF4, European emissions in early years were linked predominantly to the aluminium industry. However, we link large emissions in recent years to a chemical manufacturer in northwest Italy. Emissions of C2F6 are linked to a range of sources, including a semi-conductor manufacturer in Ireland and a cluster of smelters in Germany's Ruhr valley. In contrast, northwest European emissions of C3F8 are dominated by a single source in northwest England, raising the possibility of using emissions from this site for a tracer release experiment.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-09-30
    Print ISSN: 0013-936X
    Electronic ISSN: 1520-5851
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-27
    Description: National greenhouse gas inventories (GHGIs) are submitted annually to the United Nations Framework Convention on Climate Change (UNFCCC). They are estimated in compliance with Intergovernmental Panel on Climate Change (IPCC) methodological guidance using activity data, emission factors and facility-level measurements. For some sources, the outputs from these calculations are very uncertain. Inverse modelling techniques that use high-quality, long-term measurements of atmospheric gases have been developed to provide independent verification of national GHGIs. This is considered good practice by the IPCC as it helps national inventory compilers to verify reported emissions and to reduce emission uncertainty. Emission estimates from the InTEM (Inversion Technique for Emission Modelling) model are presented for the UK for the hydrofluorocarbons (HFCs) reported to the UNFCCC (HFC-125, HFC-134a, HFC-143a, HFC-152a, HFC-23, HFC-32, HFC-227ea, HFC-245fa, HFC-43-10mee and HFC-365mfc). These HFCs have high global warming potentials (GWPs), and the global background mole fractions of all but two are increasing, thus highlighting their relevance to the climate and a need for increasing the accuracy of emission estimation for regulatory purposes. This study presents evidence that the long-term annual increase in growth of HFC-134a has stopped and is now decreasing. For HFC-32 there is an early indication, its rapid global growth period has ended, and there is evidence that the annual increase in global growth for HFC-125 has slowed from 2018. The inverse modelling results indicate that the UK implementation of European Union regulation of HFC emissions has been successful in initiating a decline in UK emissions from 2018. Comparison of the total InTEM UK HFC emissions in 2020 with the average from 2009–2012 shows a drop of 35 %, indicating progress toward the target of a 79 % decrease in sales by 2030. The total InTEM HFC emission estimates (2008–2018) are on average 73 (62–83) % of, or 4.3 (2.7–5.9) Tg CO2-eq yr−1 lower than, the total HFC emission estimates from the UK GHGI. There are also significant discrepancies between the two estimates for the individual HFCs.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...