ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 6800-6817 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We develop a microscopic-level formulation for the curvature elasticity of monolayer and bilayer systems of typical surfactant molecules. It is argued that both the bending and saddle-splay force constants k and k¯ are determined primarily by the conformational entropy of the flexible hydrocarbon chain rather than by the electrostatic interactions associated with hydrophilic head groups. A priori estimates of the chain contributions are made for the first time, without the use of any adjustable parameters. Both k and k¯ are shown to be calculable wholly from the conformational statistics describing the planar film. In particular, these constants are expressed in terms of the derivatives and moments of the lateral pressure profile characterizing chain packing in the unbent layers. By considering the dependence of the curvature elasticity on chain length, area per molecule, and composition in mixed films, we are able to account for the order-of-magnitude variations in k observed in a variety of different surfactant systems. The replacement of long chain molecules by short ones is shown to be especially efficient in lowering the bending energy from 10's of kBT to kBT. The effect of "free'' vs "blocked'' exchange are also presented and contrasted with the case of fixed area-per-molecule bending deformation. Finally, monolayer vs bilayer results are compared and the calculated signs and magnitudes of k and k¯ are discussed in the context of planar bilayer stability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 679-687 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We study the curvature elastic properties of monolayers of diblock copolymers adsorbed at the interface of two incompatible solvents which are also selective solvents for the two blocks. At saturation, the interfacial free energy is minimized with respect to contributions from the chain conformation free energy, the interfacial tension, and the two-dimensional translational entropy of the chains. For a curved interface, this minimization leads naturally to curvature elasticity. The three elastic coefficients, the spontaneous radius of curvature, the bending modulus, and the Gaussian bending modulus, as functions of the molecular weights, the interfacial tension, the interaction parameters, etc., are obtained for a number of cases. Our study employs the theory for grafted chains recently developed by Milner et al. to obtain the chain conformation free energy which takes into account the nonuniformity of the chain-end distribution. This improvement not only affects the overall prefactor of the free energy but it changes the relative values of the three elastic coefficients as well. We consider the cases of both a swollen monolayer and a monolayer consisting of a melt of copolymer chains, as well as an interesting case where one of the blocks is in the swollen condition and the other block is in the melt condition. Because the chains in the melt and the swollen conditions have distinctively different scaling behaviors, the mixed case displays some features that are different from either the swollen and the melt cases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 89 (1988), S. 5323-5328 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We study the micellization of associating polymers (hydrocarbon chains with dipolar head groups in hydrophobic solvents) for the case where the polar heads form a linear array. The head interaction is assumed to be short ranged and the chain conformation (free) energy is assumed to follow spherical scaling in the small aggregation number limit and to have cylindrical scaling in the large aggregation number limit. In the small aggregation number limit, the aggregation number is only weakly dependent on the chain length. Numerical solutions as well as analytical studies show that the size distribution displays features of both the spherical and cylindrical aggregates: namely the absence of a sharp CMC transition and a rather sharp distribution function with a width that increases slowly with the mean aggregation number. In the large aggregation limit, the aggregation number can be a strong function of the chain molecular weight. We discuss the importance of the "end cap'' effect in determining the mean size as a function of the chain lengths.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 60 (1986), S. 247-254 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A stability theory is presented which describes the conditions under which thin films rupture. It is found that holes in the film will either grow or shrink, depending on whether their initial radius is larger or smaller than a critical value. If the holes grow large enough, they impinge to form islands; the size of which are determined by the surface energies. The formation of grooves where the grain boundary meets the free surface is a potential source of holes which can lead to film rupture. Equilibrium grain boundary groove depths are calculated for finite grain sizes. Comparison of groove depth and film thickness yields microstructural conditions for film rupture. In addition, pits which form at grain boundary vertices, where three grains meet, are another source of film instability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 60 (1986), S. 255-260 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We consider the kinetic evolution of perturbations to thin films. Since all small (nonsubstrate intersecting) perturbations to the film surface decay, we consider the evolution of large perturbations, in the form of a single hole which exposes the substrate. For large holes, the hole radius increases at a constant rate under the assumption of evaporation/condensation kinetics. When the dominant transport mode is surface diffusion, large holes grow with a rate proportional to t−3/4[log3(t/ ρ4c) ]. Small holes with a radii less than ρc shrink, where ρc is the film thickness divided by the tangent of the equilibrium wetting angle. The growth of these holes eventually leads to hole impingement which ruptures the film, creating a set of disconnected islands. The relaxation time for these islands to go to their equilibrium shape and size ( ρeq) scales as ρ2eq or ρ4eq for evaporation/condensation or surface diffusion kinetics, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Langmuir 4 (1988), S. 802-806 
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 87 (1987), S. 1824-1833 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We examine the stability of spherical, micellelike aggregates composed of long-chain, polymeric surfactants in dilute solution. The associating polymers consist of long, unbranched hydrophobic chains with one polar end-group per chain and are in a good solvent for the chains. Although the head groups prefer to aggregate in the nonpolar solvent and thus stabilize the spherical structure, the energy associated with the chain repulsions tends to destabilize the aggregates as the chain length increases. For a liquid-drop model of the head interactions, the average aggregation number evolves smoothly towards zero as the chain length increases. An alternate model of the head region, which assumes a preferred head-packing geometry, results in the ultimate destabilization of the spherical aggregate as the chain length is increased beyond a certain threshold. Both models yield a critical micelle concentration (CMC) at low values of the polymer concentration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 27 (1994), S. 5766-5772 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Langmuir 7 (1991), S. 1849-1854 
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Langmuir 7 (1991), S. 1864-1866 
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...