ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 984-985 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The motion in a viscous incompressible fluid of a vortex pair toward a rigid plane wall on which slip is allowed is considered. It is shown that the centroids of vorticity do not approach the wall monotonically, and there is some rebound at a rate depending upon the viscosity and initial separation of the vortices.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 31 (1988), S. 3188-3198 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The linear stability of a steadily moving bubble or a finger in a Hele–Shaw cell is considered in the case when gravity and the ratio between the viscosities of the less and more viscous fluids are nonzero. The effect of gravity is easily incorporated by a transformation of parameters introduced previously by Saffman and Taylor [Proc. R. Soc. London Ser. A 245, 312 (1958)] for the steady flow, which makes the time-dependent flows with and without gravity equivalent. For the nonzero viscosity ratio, the transformation of parameters introduced by Saffman and Taylor also makes steady finger and bubble flows with nonzero and zero viscosity ratios equivalent. However, for the unsteady case, there is no such equivalence and so a complete calculation is carried out to investigate the effect of the nonzero viscosity ratio on the stability of fingers and bubbles. The incorporation of the finite viscosity ratio is found not to qualitatively alter the linear stability features obtained in earlier work for the zero viscosity ratio, although there are quantitative differences in the growth or decay rate of various modes. For any surface tension, numerical calculation suggests that the McLean–Saffman branch of bubbles [Phys. Fluids 30, 651 (1987)] of arbitrary size is stable, whereas all the other branches are unstable. For a small bubble that is circular, the eigenvalues of the stability operator are found explicitly. The previous analytic theory for the stability of the finger in the limit of zero surface tension is extended to include the case of the finite viscosity ratio. It is found that, as in the case of bubbles, the finite viscosity ratio does not alter qualitatively any of the features obtained previously for the zero viscosity ratio.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 8 (1996), S. 3072-3084 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Velocity structure functions (up′−up)m are calculated for vortex models of isotropic turbulence. An integral operator is introduced which defines an isotropic two-point field from a volume-orientation average for a specific solution of the Navier–Stokes equations. Applying this to positive integer powers of the longitudinal velocity difference then gives explicit formulas for (up′−up)m as a function of order m and of the scalar separation r. Special forms of the operator are then obtained for rectilinear stretched vortex models of the Townsend–Lundgren type. Numerical results are given for the Burgers vortex and also for a realization of the Lundgren-strained spiral vortex, and comparison with experimental measurement is made. In an Appendix, we calculate values of the velocity-derivative moments for the Townsend–Burgers model. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 5 (1993), S. 126-145 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The strained-spiral vortex model of turbulent fines scales given by Lundgren [Phys. Fluids 25, 2193 (1982)] is used to calculate vorticity and velocity-derivative moments for homogeneous isotropic turbulence. A specific form of the relaxing spiral vortex is proposed modeled by a rolling-up vortex layer embedded in a background containing opposite signed vorticity and with zero total circulation at infinity. The numerical values of two dimensionless groups are fixed in order to give a Kolmogorov constant and skewness which are within the range of experiment. This gives the result that the ratio of the ensemble average hyperskewness S2p+1≡ (∂u/∂x)2p+1/[(∂u/∂x)2](2p+1)/2 to the hyperflatness F2p≡(∂u/∂x)2p/[(∂u/∂x)2] p, p=2,3,..., is constant independent of Taylor–Reynolds number Rλ, as is the ratio of the 2pth moment of one component of the vorticity Ω2p≡ω2px/(ω2x)p to F2p. A cutoff in a relevant time integration is then used to eliminate vortex-sheet-induced divergences in the integrals corresponding to ω2px, p=2,3,..., and an assumption is made that the lateral scale of the spiral vortex in the model is the geometric mean of the Taylor and the Kolmogorov microscales. This gives Ω2p=Ωˆ2pRλp/2−3/4, F2p=Fˆ2pRλp/2−3/4 and S2p+1=Sˆ2p+1Rλp/2−3/4, p=2,3,..., with explicit calculation of the numbers Ωˆ2p, Fˆ2p, and Sˆ2p+1. The results of the model are compared with experimental compilation of Van Atta and Antonia [Phys. Fluids 23, 252 (1980)] for F4 and with the isotropic turbulence calculations of Kerr [J. Fluid Mech. 153, 31 (1985)] and of Vincent and Meneguzzi [J. Fluid Mech. 225, 1 (1991)].
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 1 (1989), S. 1767-1771 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The problem of calculating the kinetic energy created by impulsive acceleration of an incompressible continuously stratified fluid is formulated. Solutions are obtained for small density perturbations and a particular profile for various Atwood numbers and length scales. The kinetic energy is reduced when the undisturbed density variation is more diffuse.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 29 (1986), S. 2373-2375 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The representation of an inviscid three-dimensional incompressible flow by vortex singularities is considered and shown to lead to dynamical inconsistencies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 31 (1988), S. 978-990 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Steady, inviscid, incompressible, two-dimensional flows with vortex patches bounded by vortex sheets (Batchelor flows) are calculated numerically. Two particular cases are considered: the vortex on a plane wall (Sadovskii vortex) and the vortex in a right-angled corner. Nonlinear integral equations are derived for the shape of the bounding vortex sheet which are solved numerically. Two different formulations are employed to check the results. Previous results by Sadovskii [Appl. Math. Mech. 35, 773 (1971)] and Chernyshenko (Royal Aircraft Establishment library translations Report No. 2133, 1983) for specific values of the parameters are confirmed. Only symmetrical solutions are found to exist.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 30 (1987), S. 2339-2342 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The recent theory describing 3-D exact solutions of the Navier–Stokes equations is applied to the problem of stability of 2-D viscous flow with elliptical streamlines. An intrinsically inviscid instability mechanism persists in all such flows provided the length scale of the disturbance is sufficiently large. Evidence is presented that this mechanism may be responsible for 3-D instabilities in high Reynolds number flows whose vortex structures can be locally described by elliptical streamlines.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 11 (1979), S. 95-121 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 6 (1994), S. 1787-1796 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Homogeneous anisotropic turbulence consisting of a collection of straight vortex structures is considered, each with a cylindrically unidirectional, but otherwise arbitrary, internal vorticity field. The orientations of the structures are given by a distribution P of appropriate Euler angles describing the transformation from laboratory to structure-fixed axes. One-dimensional spectra of the velocity components are calculated in terms of P, and the shell-summed energy spectrum. An exact kinematic relation is found in which volume-averaged Reynolds stresses are proportional to the turbulent kinetic energy of the vortex collection times a tensor moment of P. A class of large-eddy simulation models for nonhomogeneous turbulence is proposed based on application of the present results to the calculation of subgrid Reynolds stresses. These are illustrated by the development of a simplified model using a rapid-distortion-like approximation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...