ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 7 (1995), S. 307-314 
    ISSN: 1089-7666
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The effect of an insoluble, elastic surface film on the drift velocity of capillary–gravity waves is studied theoretically on the basis of a Lagrangian description of motion. There is no forcing from the atmosphere, and the wave amplitude is taken to attenuate in time. Defining a nondimensional parameter α, which combines film elasticity, fluid viscosity, and wave frequency, maximum damping of the linear waves occurs when α=1 (the Marangoni effect). In this case the frequency of capillary–gravity waves nearly coincides with that of elastic film waves. The nonlinear drift velocity is obtained for general values of α. In particular, it is found that the absolute maximum of the transient drift current is located below the surface when α(approximately-greater-than)2/3. At the surface, maximum drift velocity (in time domain) occurs for values of α that are somewhat less than one. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2013-09-24
    Beschreibung: A method for estimating return values from ensembles of forecasts at advanced lead times is presented. Return values of significant wave height in the northeast Atlantic, the Norwegian Sea, and the North Sea are computed from archived +240-h forecasts of the ECMWF Ensemble Prediction System (EPS) from 1999 to 2009. Three assumptions are made: First, each forecast is representative of a 6-h interval and collectively the dataset is then comparable to a time period of 226 years. Second, the model climate matches the observed distribution, which is confirmed by comparing with buoy data. Third, the ensemble members are sufficiently uncorrelated to be considered independent realizations of the model climate. Anomaly correlations of 0.20 are found, but peak events (〉P97) are entirely uncorrelated. By comparing return values from individual members with return values of subsamples of the dataset it is also found that the estimates follow the same distribution and appear unaffected by correlations in the ensemble. The annual mean and variance over the 11-yr archived period exhibit no significant departures from stationarity compared with a recent reforecast; that is, there is no spurious trend because of model upgrades. The EPS yields significantly higher return values than the 40-yr ECMWF Re-Analysis (ERA-40) and ECMWF Interim Re-Analysis (ERA-Interim) and is in good agreement with the high-resolution 10-km Norwegian Reanalyses (NORA10) hindcast, except in the lee of unresolved islands where EPS overestimates and in enclosed seas where it has low bias. Confidence intervals are half the width of those found for ERA-Interim because of the magnitude of the dataset.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2004-06-01
    Print ISSN: 0027-0644
    Digitale ISSN: 1520-0493
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 1998-02-25
    Beschreibung: The linear stability of turbulent shear flow over a film-covered sea surface is studied theoretically. A compound matrix method (Wheless & Csanady 1993), is used to solve the eigenvalue problem numerically. The numerical method has been adjusted to a coupled air-sea system. In the stability problem the vertical component of the turbulent Reynolds stress has been taken into account. As pointed out by Wheless & Csanady, the second derivative of the traditional log-linear wind profile has a rather extreme behaviour near the matching point of the linear and logarithmic part. To improve the model, a new profile is calculated based on an eddy viscosity distribution for channel flow (Quarmby & Anand 1969), which has continuous derivatives all the way down to the surface. Calculations of the wave growth rates corresponds well with earlier theoretical results as well as laboratory measurements. The energy flux from the air to the sea caused by the pressure work at the surface has been calculated. An intriguing result obtained here is that this flux seems to be strongly dependent on the elastic property of the surface film. The flux attains a maximum for finite values of the film elasticity parameter.
    Print ISSN: 0022-1120
    Digitale ISSN: 1469-7645
    Thema: Maschinenbau , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2011-07-05
    Print ISSN: 0035-9009
    Digitale ISSN: 1477-870X
    Thema: Geographie , Physik
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2010-08-01
    Beschreibung: A unique dataset of atmospheric observations over the Nordic Seas has been analyzed to investigate the role of convective available potential energy (CAPE) for the energetics of polar lows. The observations were made during the flight campaign of the Norwegian International Polar Year (IPY) and The Observing System Research and Predictability Experiment (THORPEX) in February and March 2008, which specifically targeted polar lows. The data reveal virtually no conditional instability and very limited CAPE. It is suggested that the significance of CAPE values should be assessed by calculating the time scale tCAPE that is necessary for the heat fluxes from the ocean to transfer the corresponding amount of energy. Even the largest CAPE values have a tCAPE of less than 1 h. These CAPE values are associated with unconditional instability. It is concluded that the observed CAPE should be seen as a temporary stage in an energy flux rather than as an energy reservoir. Based on the findings in this investigation, it is proposed that significant reservoirs of CAPE over the marine Arctic atmosphere are impossible since CAPE production will automatically trigger convection and CAPE is consumed as it is produced.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2009-08-01
    Beschreibung: Recent field observations and large-eddy simulations have shown that the impact of fast swell on the marine atmospheric boundary layer (MABL) might be stronger than previously assumed. For low to moderate winds blowing in the same direction as the waves, swell propagates faster than the mean wind. The momentum flux above the sea surface will then have two major components: the turbulent shear stress, directed downward, and the swell-induced stress, directed upward. For sufficiently high wave age values, the wave-induced component becomes increasingly dominant, and the total momentum flux will be directed into the atmosphere. Recent field measurements have shown that this upward momentum transfer from the ocean into the atmosphere has a considerable impact on the surface layer flow dynamics and on the turbulence structure of the overall MABL. The vertical wind profile will no longer exhibit a logarithmic shape because an acceleration of the airflow near the surface will take place, generating a low-level wave-driven wind maximum (a wind jet). As waves propagate away from their generation area as swell, some of the wave momentum will be returned to the atmosphere in the form of wave-driven winds. A model that qualitatively reproduces the wave-following atmospheric flow and the wave-generated wind maximum, as seen from measurements, is proposed. The model assumes a stationary momentum and turbulent kinetic energy balance and uses the dampening of the waves at the surface to describe the momentum flux from the waves to the atmosphere. In this study, simultaneous observations of wind profiles, turbulent fluxes, and wave spectra during swell events are presented and compared with the model. In the absence of an established model for the linear damping ratio during swell conditions, the model is combined with observations to estimate the wave damping. For the cases in which the observations showed a pronounced swell signal and almost no wind waves, the agreement between observed and modeled wind profiles is remarkably good. The resulting attenuation length is found to be relatively short, which suggests that the estimated damping ratios are too large. The authors attribute this, at least partly, to processes not accounted for by the model, such as the existence of an atmospheric background wind. In the model, this extra momentum must be supplied by the waves in terms of a larger damping ratio.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2006-11-01
    Beschreibung: It is demonstrated that the Eulerian and the Lagrangian descriptions of fluid motion yield the same form for the mean wave-induced volume fluxes in the surface layer of a viscous rotating ocean. In the Eulerian case, the volume fluxes are obtained in the familiar way by integrating the horizontal components of the Navier–Stokes equation in the vertical direction, as seen, for example, in the book by Phillips. In the direct Lagrangian approach, the perturbation equations for the second-order mean drift are integrated in the vertical direction. This yields the advantage that the form drag, which is a source term for the wave-induced transports, can be related to the virtual wave stress that acts to transfer dissipated mean wave momentum into mean currents. In particular, for waves that are periodic in space and time, comparisons between empirical and theoretical relations for the form drag yield an estimate for the wave-induced bulk turbulent eddy viscosity in the surface layer. A simplistic approach extends this analysis to account for wave breaking. By a generalization from a wave component to a wave spectrum, a set of equations for the wave-induced transport in the surface layer is derived for a fully developed sea. Solutions are discussed for an idealized spectral formulation. The problem is formulated such that a numerical wave prediction model can be used to generate the wave-forcing terms in a numerical barotropic ocean surge model. Results from the numerical simulations with a wave-influenced surge model are discussed and compared with similar results from forcing the surge model only by the traditional mean horizontal wind stress computed from the 10-m wind speed. For the simulations presented here, the wave-induced stress constitutes about 50% of the total atmospheric stress for moderate to strong winds.
    Print ISSN: 0022-3670
    Digitale ISSN: 1520-0485
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2007-11-01
    Beschreibung: The impact of wave-dependent surface stress on the ocean circulation has been studied using surface stresses calculated from a numerical wave model. The main questions to be investigated were what the effect would be on the Ekman currents in the upper ocean and what the impact would be on storm surge predictions. To answer the first question, the response of wave-dependent forcing on an Ekman type of model was studied. Here, the wave forcing was provided by a one-gridpoint version of the wave model. Second, the impact of the waves was studied with a three-dimensional ocean circulation model for the North Sea. Three different experiments were performed for a period of 1 yr. To test the effect on the storm surge signal, the results have been compared with sea level observations from 22 stations along the Norwegian and Dutch coasts. One of the main findings is that calculating stresses in the wave model, thereby introducing sea-state-dependent momentum fluxes, has a strong positive impact on the storm surge modeling compared with applying a traditional parameterization of surface stresses from the 10-m wind speed. When all cases with sea level deviation from the mean of less than 0.5 m were removed, the root-mean-square error for 1 yr averaged over all stations was reduced by approximately 6 cm. Splitting the momentum budget into an Eulerian and a wave part (Stokes drift) has only a negligible effect on the modeling of the sea surface elevation but increases the angular turning of the Eulerian surface drift to the right of the wind direction with an angle of about 4°.
    Print ISSN: 0022-3670
    Digitale ISSN: 1520-0485
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2004-08-01
    Print ISSN: 0882-8156
    Digitale ISSN: 1520-0434
    Thema: Geographie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...