ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2023-11-03
    Description: Methods and results for parameter optimization and uncertainty analysis for a one-dimensional marine biogeochemical model of NPZD type are presented. The model, developed by Schartau and Oschlies, simulates the distribution of nitrogen, phytoplankton, zooplankton and detritus in a water column and is driven by ocean circulation data. Our aim is to identify parameters and fit the model output to given observational data. For this model, it has been shown that a satisfactory fit could not be obtained, and that parameters with comparable fits can vary significantly. Since these results were obtained by evolutionary algorithms (EA), we used a wider range of optimization methods: A special type of EA (called quantum-EA) with coordinate line search and a quasi-Newton SQP method, where exact gradients were generated by Automatic/Algorithmic Differentiation. Both methods are parallelized and can be viewed as instances of a hybrid, mixed evolutionary and deterministic optimization algorithm that we present in detail. This algorithm provides a flexible and robust tool for parameter identification and model validation. We show how the obtained parameters depend on data sparsity and given data error. We present an uncertainty analysis of the optimized parameters w.r.t. Gaussian perturbed data. We show that the model is well suited for parameter identification if the data are attainable. On the other hand, the result that it cannot be fitted to the real observational data without extension or modification, is confirmed. (C) 2010 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...