ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: PIK N 076-99-0309
    Type of Medium: Monograph available for loan
    Pages: 51 p.
    Series Statement: Progress Report 1
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 85 (1995), S. 1539-1550 
    ISSN: 1573-2932
    Keywords: acidification ; air pollution impacts ; climate change ; global change ; integrated modeling ; sulfur deposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract This paper presents one of the first integrated analyses of acidification and climate change on a geographically-detailed basis, and the first linkage of integrated models for acid deposition (RAINS) and for climate change (IMAGE 2). Emphasis in this paper is on Europe. Trends in driving forces of emissions are used to compute anthropogenic SO2 emissions in 13 world regions. These emissions are translated into regional patterns of sulfur deposition in Europe and global patterns of sulfate aerosols using source-receptor matrices. Changes in climate are then computed based on changes in sulfate and greenhouse gases. Finally, we compute ecosystem areas affected by acid deposition and climate change based on exceedances of critical loads and changes in potential vegetation. Using this framework, information from global and regional integrated models can be used to link sulfur emissions with both their global and regional consequences. Preliminary calculations indicate that the size of European area affected by climate change in 2100 (58%) will be about the same as that affected by acid deposition in 1990. By the mid 21st century, about 14% of Europe's area may be affected by both acid deposition and climate change. Also, reducing sulfur emissions in Europe will have both the desirable impact of reducing the area affected by acid deposition, and the undesirable impact of enhancing climate warming in Europe and thus increasing the area affected by climate change. However, for the scenarios in this paper, the desirable impact of reducing sulfur emissions greatly outweighs its undesirable impact.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 72 (1994), S. 357-394 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Critical loads for N, S and total acidity, and amounts by which they are exceeded by present atmospheric loads, were derived for coniferous and deciduous forests in Europe using the one-layer steady-state model START. Results indicated that present acid loads exceed critical values in approximately 45% of the forested area i.e. 52% of all coniferous forests and 33% of all deciduous forests. The area exceeding critical loads was nearly equal for N (50%) and S (52%). However, the maximum exceedances were much higher for S (up to 12000 molc ha−1 yr−1 in Czechoslovakia, Poland and Germany) than for N (up to 3500 molc ha−1 yr−1 in the Netherlands, Belgium and Germany). Furthermore, the critical N loads derived refer to the risk of increased vegetation changes. Higher values, i.e. lower exceedances, were found for N when it was related to an increased risk in forest vitality decrease. The uncertainty in the area exceeding critical loads was estimated to be about ±50% of the given value. This is mainly due to uncertainties in the chemical criteria that have been used. However, despite the uncertainties involved it is clear that large exceedances in critical N and S loads occur in Western and Central Europe. This coincides with the area where a decrease in forest vitality has been reported.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 78 (1994), S. 215-246 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The chemical response of European forest soils to three emission-deposition scenarios for the years 1960–2050, i.e. official energy pathways (OEP), current reduction plans (CRP) and maximum feasible reductions (MFR), was evaluated with the SMART model (Simulation Model for Acidification's Regional Trends). Calculations were made for coniferous and deciduous forests on 80 soil types occurring on the FAO soil map of Europe, using a gridnet of 1.0 ° longitude x 0.5 ° latitude. Results indicated that the area with nitrogen saturated soils, i.e. soils with elevated NO3 concentrations (〉 0.02 molc m−3) will increase in the future for all scenarios, even for the MFR scenario. The area with acidified soils, with a high Al concentration (〉 0.2 molc m−3) and Al/BC ratio (〉 1 mol mol−3) and a low pH (〈 4) and base saturation (〈 5%), was predicted to increase for the OEP scenario and to decrease for the MFR scenario. The CRP scenario resulted in a continuous increase in the forested area with an Al/BC ratio above critical values. A small decrease was predicted in the area exceeding a critical Al concentration up to the year 2000 followed by a slight increase after 2000. Areas with very high NO3 and Al concentrations mainly occurred in western, central and eastern Europe. Uncertainties in the initial values of C/N ratios and base saturation, and in the description of N dynamics in the SMART model had the largest impact on the temporal development of forested areas exceeding critical parameter values. Despite uncertainties involved, predicted general trends are plausible and reliable.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 85 (1995), S. 2419-2424 
    ISSN: 1573-2932
    Keywords: critical load ; acidity ; water acidification ; soil acidification ; fish ; empirical models ; sulphur deposition ; acid episodes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The critical load of acidity for surface waters is based on the concept that the inputs of acids to a catchment do not exceed the weathering less a given amount of ANC. The Steady State Water Chemistry (SSWC) Method is used to calculate critical loads, using present water chemistry. To ensure no damage to biological indicators such as fish species a value for ANClimit of 20 μeq/l has been used to date for calculating critical loads. The SSWC-method is sensitive to the choice of the ANClimit. In areas with little acid deposition the probability of acid episodes leading to fish kills is small even if the ANClimit is set to zero, while in areas with high acidic deposition fish kills may occur at this value. Thus, the ANClimit can be a function of the acidifying deposition to the lake, nearing zero at low deposition and increasing to higher values at higher deposition. A formulation for such an ANClimit has been worked out, and we have tested the effect of the ANClimit as a linear function of the deposition, assuming ANClimit = 0 at zero deposition with a linear increase to 50 ueq/l at a deposition of 200 meq.m−2.yr−1. For areas with high deposition the effect of a variable ANClimit is small, while in areas with low deposition the effect is significant. For Norway the exceeded area decreases from 36 to 30% using a variable ANClimit instead of a fixed value of 20 μeq/l.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 85 (1995), S. 2381-2388 
    ISSN: 1573-2932
    Keywords: critical loads ; acid deposition ; emission reductions ; air pollution impacts ; ecosystem sensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Critical loads have been used in the revision of the Sulphur Protocol of the Convention on Long Range Transboundary Air Pollution (LRTAP) of the United Nations Economic Commission for Europe (UN/ECE). Critical loads, i.e. maximum allowable depositions which do not increase the probability of damage to forest soils and surface waters, have been computed and mapped for Europe by means of the Steady-state Mass Balance Method, using national data and, if national data were unavailable, using a European database. Results show that areas with low critical loads are located mostly in northern and central Europe. The reduction of the excess of sulfur (S) deposition over critical loads was a starting point for negotiations leading to the Oslo Protocol on Further Reduction of Sulphur Emissions (the “Second Sulphur Protocol”). The new protocol protects about 81%, 86% and 90% of the ecosystems' area in 2000, 2005 and 2010, respectively. In addition, the total European area in which sulphur deposition exceeds critical loads by more than 500 eq ha−1 yr−1 will be reduced from about 19% in 1980 to practically zero in 2010. Besides these results, a methodology is presented which allows the combined assessment of the acidifying effects of S and N as well as the eutrophying effects of N deposition on ecosystems (so-called critical load functions and the protection isolines derived from them). This methodology is well suited to integrate ecosystem sensitivities into future negotiations on the reductions of nitrogen (N) compounds, taking into account present or anticipated S emissions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-2932
    Keywords: acidification ; emission ; MAGIC ; model ; nitrogen ; SAFE ; SMART ; sulfur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Three well-known dynamic acidification models (MAGIC, SAFE, SMART) were applied to data sets from five Integrated Monitoring sites in Europe. The calibrated models were used in a policy-oriented framework to predict the long-term soil acidification of these background forest sites, given different scenarios of future deposition of S and N. Emphasis was put on deriving realistic site-specific scenarios for the model applications. The deposition was calculated with EMEP transfer matrices and official emissions for the target years 2000, 2005 and 2010. The alternatives for S deposition were current reduction plans and maximum feasible reductions. For N, the NOx and NHy depositions were frozen at the present level. For NOx, a reduction scenario of flat 30% reduction from present deposition also was utilized to demonstrate the possible effects of such a measure. The three models yielded generally consistent results. The ‘Best prediction’-scenario (including the effects of the second UN/ECE protocol for reductions of SO2 emissions and present level for NOx-emissions), resulted in many cases in a stabilization of soil acidification, although significant improvements were not always shown. With the exception of one site, the ‘Maximum Feasible Reductions’ scenario always resulted in significant improvements. Dynamic models are needed as a complement to steady-state techniques for estimating critical loads and assessing emission reduction policies, where adequate data are available.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 48 (1989), S. 349-390 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A soil acidification model has been developed to estimate long-term chemical changes in soil and soil water in response to changes in atmospheric deposition. Its major outputs include base saturation, pH and the molar Al/BC ratio, where BC stands for divalent base cations. Apart from net uptake and net immobilization of N, the processes accounted for are restricted to geochemical interactions, including weathering of carbonates, silicates and Al oxides and hydroxides, cation exchange and CO2 equilibriums. First, the model's behavior in the different buffer ranges between pH 7 and pH 3 is evaluated by analyzing the response of an initially calcareous soil of 50 cm depth to a constant high acid load (5000 molc ha−1 yr−1) over a period of 500 yr. In calcareous soils weathering is fast and the pH remains high (near 7) until the carbonates are exhausted. Results indicate a time lag of about 100 yr for each percent CaCO3 before the pH starts to drop. In non-calcareous soils the response in the range between pH 7 and 4 mainly depends on the initial amount of exchangeable base cations. A decrease in base saturation by H/BC exchange and Al/BC exchange following dissolution of Al3+ leads to a strong increase in the Al/BC ratio near pH 4. A further decrease in pH to values near 3.0 does occur when the A1 oxides and/or hydroxides are exhausted. The analyses show that this could occur in acid soils within several decades. The buffer mechanisms in the various pH ranges are discussed in relation to Ulrich's concept of buffer ranges. Secondly, the impact of various deposition scenarios on non-calcareous soils is analyzed for a time period of 100 yr. The results indicate that the time lag between reductions in deposition and a decrease in the Al/BC ratio is short. However, substantial reductions up to a final deposition level of 1000 molc ha−1 yr−1 are needed to get Al/BC ratios below a critical value of 1.0.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemie Ingenieur Technik - CIT 64 (1992), S. 814-815 
    ISSN: 0009-286X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-06
    Description: [1]  Traveling convection vortices (TCVs), which appear in ground magnetometer records at near-cusp latitudes as solitary ~5 mHz pulses, are a signature of dynamical processes in the ion foreshock upstream of the Earth's bow shock that can stimulate transient compressions of the dayside magnetosphere. These compressions can also increase the growth rate of electromagnetic ion cyclotron (EMIC) waves, which appear in ground records at these same latitudes as bursts of Pc1 pulsations. In this study we have identified TCVs and simultaneous Pc1 burst events occurring from 2008 through the first 7 months of 2010 in two regions, Eastern Arctic Canada and Svalbard, using a combination of fluxgate magnetometers (the MACCS and IMAGE arrays) and search coil magnetometers in each region. By looking for the presence of TCVs and Pc1 bursts in two different sequences (identifying TCVs first in Eastern Canada, and then looking for simultaneous Pc1 bursts, and identifying Pc1 bursts first in Svalbard, and then looking for simultaneous TCVs), we have found that the distribution of Pc1 bursts was more tightly clustered near local noon than that of TCV events, that neither TCVs nor Pc1 bursts were always associated with the other, and even when they occurred simultaneously their amplitudes showed little correlation. Magnetometer data from GOES-12 were also used to characterize the strength of the magnetic compressions at geosynchronous orbit near the magnetic equator. Compressions 〉 2 nT at GOES-12 occurred during 57% of the Canadian TCV events, but during ~85% of the simultaneous TCV / Pc1 burst events. There was again little evident correlation between TCV and GOES-12 compression amplitudes. We have also documented unusually low EMIC wave activity during this deep solar minimum interval, and we attribute the low occurrence percentage of combined events in this study (much lower than that found in two earlier studies using data from this same region) to this minimum.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...