ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Monthly Weather Review, AMER METEOROLOGICAL SOC, ISSN: 0027-0644
    Publication Date: 2020-03-05
    Description: The presented picture of the month is a superposition of space-borne lidar observations and high-resolution temperature fields of the ECMWF integrated forecast system (IFS). It displays complex tropospheric and stratospheric clouds in the Arctic winter 2015/16. Near the end of December 2015, the unusual northeastward propagation of warm and humid subtropical air masses as far north as 80°N lifted the tropopause by more than 3 km in 24 h and cooled the stratosphere on a large scale. A widespread formation of thick cirrus clouds near the tropopause and of synoptic-scale polar stratospheric clouds (PSCs) occurred as the temperature dropped below the thresholds for the existence of cloud particles. Additionally, mountain waves were excited by the strong flow at the western edge of the ridge across Svalbard, leading to the formation of mesoscale ice PSCs. The most recent IFS cycle using a horizontal resolution of 8 km globally reproduces the large-scale and mesoscale flow features and leads to a remarkable agreement with the wave structure revealed by the space-borne observations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Atmospheric Chemistry and Physics, COPERNICUS GESELLSCHAFT MBH, 16, pp. 3311-3325, ISSN: 1680-7316
    Publication Date: 2016-03-16
    Description: We examined observations of polar stratospheric clouds (PSCs) by CALIPSO and of HCl, ClO and HNO3 by MLS along air mass trajectories to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels, and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/10 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT) and super-cooled ternary solution (STS) mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed, and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an airmass encountered PSCs. The observed and modelled dependence of the rate of chlorine activation on the PSC composition class was small. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  EPIC3Stratospheric processes and their role in climate (SPARC) Newsletter, 33IV, 14
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1989-01-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-06-05
    Description: The role of polar stratospheric clouds in polar ozone loss has been well documented. The CALIPSO satellite mission offers a new opportunity to characterize PSCs on spatial and temporal scales previously impossible. A PSC detection algorithm based on a single wavelength threshold approach has been developed for CALIPSO. The method appears to accurately detect PSCs of all opacities, including tenuous clouds, with a very low rate of false positives and few missed clouds. We applied the algorithm to CALIOP data acquired during the 2006 Antarctic winter season from 13 June through 31 October. The spatial and temporal distribution of CALIPSO PSC observations is illustrated with weekly maps of PSC occurrence. The evolution of the 2006 PSC season is depicted by time series of daily PSC frequency as a function of altitude. Comparisons with "virtual" solar occultation data indicate that CALIPSO provides a different view of the PSC season than attained with previous solar occultation satellites. Measurement-based time series of PSC areal coverage and vertically-integrated PSC volume are computed from the CALIOP data. The observed area covered with PSCs is significantly smaller than would be inferred from the commonly used temperature-based proxy TNAT but is similar in magnitude to that inferred from TSTS . The potential of CALIOP measurements for investigating PSC composition is illustrated using combinations of lidar backscatter and volume depolarization for two CALIPSO PSC scenes.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-04-26
    Description: We have examined the 532-nm aerosol backscatter coefficient measurements by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) for their use in the observation of stratospheric aerosol. CALIPSO makes observations that span from 82° S to 82° N each day and, for each profile, backscatter coefficient values reported up to ~40 km. The possibility of using CALIPSO for stratospheric aerosol observations is demonstrated by the clear observation of the 20 May 2006 eruption of Montserrat in the earliest CALIPSO data in early June as well as by observations showing the 7 October 2006 eruption of Tavurvur (Rabaul). However, the very low aerosol loading within the stratosphere makes routine observations of the stratospheric aerosol far more difficult than relatively dense volcanic plumes. Nonetheless, we found that averaging a complete days worth of nighttime only data into 5-deg latitude by 1-km vertical bins reveals a stratospheric aerosol layer centered near an altitude of 20 km, the clean wintertime polar vortices, and a small maximum in the lower tropical stratosphere. However, the derived values are clearly too small and often negative in much of the stratosphere. The data can be significantly improved by increasing the measured backscatter (molecular and aerosol) by approximately 5% suggesting that the current method of calibrating to a pure molecular atmosphere at 30 km is most likely the source of the low values.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-10-18
    Description: Spaceborne lidar measurements from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) are used to provide a vortex-wide perspective of the 2009–2010 Arctic polar stratospheric cloud (PSC) season to complement more focused measurements from the European Union RECONCILE (reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) field campaign. The 2009–2010 Arctic winter was unusually cold at stratospheric levels, especially from mid-December 2009 until the end of January 2010, and was one of only a few winters from the past 52 years with synoptic-scale regions of temperatures below the frost point. More PSCs were observed by CALIPSO during the 2009–2010 Arctic winter than in the previous three Arctic seasons combined. In particular, there were significantly more observations of high number density nitric acid trihydrate (NAT) mixtures (referred to as Mix 2-enh) and ice PSCs. We found that the 2009–2010 season could roughly be divided into four periods with distinctly different PSC optical characteristics. The early season (15–30 December 2009) was characterized by patchy, tenuous PSCs, primarily low number density liquid/NAT mixtures. The second phase of the season (31 December 2009–14 January 2010) was characterized by frequent mountain wave ice clouds that nucleated widespread NAT particles throughout the vortex, including Mix 2-enh. The third phase of the season (15–21 January 2010) was characterized by synoptic-scale temperatures below the frost point which led to a rare outbreak of widespread ice clouds. The fourth phase of the season (22–28 January) was characterized by a major stratospheric warming that distorted the vortex, displacing the cold pool from the vortex center. This final phase was dominated by supercooled ternary solution (STS) PSCs, although NAT particles may have been present in low number densities, but were masked by the more abundant STS droplets at colder temperatures. We also found distinct variations in the relative proportion of PSCs in each composition class with altitude over the course of the 2009–2010 Arctic season. Lower number density liquid/NAT mixtures were most frequently observed in the lower altitude regions of the clouds (below ∼18–20 km), which is consistent with CALIPSO observations in the Antarctic. Higher number density liquid/NAT mixtures, especially Mix 2-enh, were most frequently observed at altitudes above 18–20 km, primarily downstream of wave ice clouds. This pattern is consistent with the conceptual model whereby low number density, large NAT particles are precipitated from higher number density NAT clouds (i.e. mother clouds) that are nucleated downstream of mountain wave ice clouds.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-03-27
    Description: This paper focuses on polar stratospheric cloud (PSC) measurements by the CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) lidar system onboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spacecraft, which has been operating since June 2006. We describe a second-generation PSC detection algorithm that utilizes both the CALIOP 532-nm scattering ratio (ratio of total-to-molecular backscatter coefficients) and 532-nm perpendicular backscatter coefficient measurements for cloud detection. The inclusion of the perpendicular backscatter measurements enhances the detection of tenuous PSC mixtures containing low number densities of solid particles and leads to about a 15% increase in PSC areal coverage compared with our original algorithm. In addition, the new algorithm allows discrimination of PSCs by composition in terms of their ensemble backscatter and depolarization in a manner analogous to that used in previous ground-based and airborne lidar PSC studies. Based on theoretical optical calculations, we define four CALIPSO-based composition classes which we call supercooled ternary solution (STS), ice, and Mix1 and Mix2, denoting mixtures of STS with nitric acid trihydrate (NAT) particles in lower or higher number densities/volumes, respectively. We examine the evolution of PSCs for three Antarctic and two Arctic seasons and illustrate the unique attributes of the CALIPSO PSC database. These analyses show substantial interannual variability in PSC areal coverage and also the well-known contrast between the Antarctic and Arctic. The CALIPSO data also reveal seasonal and altitudinal variations in Antarctic PSC composition, which are related to changes in HNO3 and H2O observed by the Microwave Limb Sounder on the Aura satellite.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-02-15
    Description: The MIPAS instrument onboard the ESA Envisat satellite operated from July 2002 until April 2012. The infrared limb emission measurements represent a unique dataset of day and night observations of polar stratospheric clouds (PSCs) up to both poles. Cloud detection sensitivity is comparable to spaceborne lidars, and it is possible to classify different cloud types from the spectral measurements in different atmospheric windows regions. Here we present a new PSC classification scheme based on the combination of a well-established two-colour ratio method and multiple 2D brightness temperature difference probability density functions. The method is a simple probabilistic classifier based on Bayes' theorem with a strong independence assumption. The method has been tested in conjunction with a database of radiative transfer model calculations of realistic PSC particle size distributions, geometries, and composition. The Bayesian classifier distinguishes between solid particles of ice and nitric acid trihydrate (NAT), as well as liquid droplets of super-cooled ternary solution (STS). The classification results are compared to coincident measurements from the space borne lidar CALIOP instrument over the temporal overlap of both satellite missions (June 2006 to March 2012). Both datasets show a good agreement for the specific PSC classes, although the viewing geometries, vertical and horizontal resolution are quite different. Discrepancies are observed for the MIPAS ice class. The Bayesian classifier for MIPAS identifies substantially more ice clouds in the southern hemisphere polar vortex than CALIOP. This disagreement is attributed in parts to the difference in the sensitivity on mixed-type clouds. Ice seems to dominate the spectral behaviour in the limb infrared spectra and may cause an overestimation in ice occurrence compared to the real fraction of ice within the PSC area in the polar vortex. The entire MIPAS measurement period was processed with the new classification approach. Examples like the detection of the Antarctic NAT belt during early winter, and its possible link to mountain wave events over the Antarctic Peninsula, which are observed by the AIRS instrument, are highlighting the importance of a climatology of in total 9 southern and 10 northern hemisphere winters. The new dataset is valuable both for detailed process studies, and for comparisons with and improvements of the PSC parameterisations used in chemistry transport and climate models.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...