ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    facet.materialart.
    Unknown
    In:  EPIC3J Exp Mar Biol Ecol, 92, pp. 63-81
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Fisheries Research Board of Canada
    In:  EPIC3Ottawa, Canada, Fisheries Research Board of Canada
    Publication Date: 2015-12-10
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier Science Limited
    Publication Date: 2022-06-10
    Description: The aftershock zone of each large (M ≥ 7) earthquake extends throughout the shallows of planet Earth. Most aftershocks cluster near the mainshock rupture, but earthquakes send out shivers in the form of seismic waves, and these temporary distortions are large enough to trigger other earthquakes at global range. The aftershocks that happen at great distance from their mainshock are often superposed onto already seismically active regions, making them difficult to detect and understand. From a hazard perspective we are concerned that this dynamic process might encourage other high magnitude earthquakes, and wonder if a global alarm state is warranted after every large mainshock. From an earthquake process perspective we are curious about the physics of earthquake triggering across the magnitude spectrum. In this review we build upon past studies that examined the combined global response to mainshocks. Such compilations demonstrate significant rate increases during, and immediately after (~45 min) M N 7.0 mainshocks in all tectonic settings and ranges. However, it is difficult to find strong evidence for M N 5 rate increases during the passage of surface waves in combined global catalogs. On the other hand, recently published studies of individual large mainshocks associate M N 5 triggering at global range that is delayed by hours to days after surface wave arrivals. The longer the delay between mainshock and global aftershock, the more difficult it is to establish causation. To address these questions, we review the response to 260 M ≥ 7.0 shallow (Z ≤ 50 km) mainshocks in 21 global regions with local seismograph networks. In this way we can examine the detailed temporal and spatial response, or lack thereof, during passing seismic waves, and over the 24 h period after their passing. We see an array of responses that can involve immediate and widespread seismicity outbreaks, delayed and localized earthquake clusters, to no response at all. About 50% of the catalogs that we studied showed possible (localized delayed) remote triggering, and ~20% showed probable (instantaneous broadly distributed) remote triggering. However, in any given region, at most only about 2–3% of global mainshocks caused significant local earthquake rate increases. These rate increases are mostly composed of small magnitude events, and we do not find significant evidence of dynamically triggered M N 5 earthquakes. If we assume that the few observed M N 5 events are triggered, we find that they are not directly associated with surface wave passage, with first incidences being 9–10 h later. We note that mainshock magnitude, relative proximity, amplitude spectra, peak ground motion, and mainshock focal mechanisms are not reliable determining factors as to whether a mainshock will cause remote triggering. By elimination, azimuth, and polarization of surface waves with respect to receiver faults may be more important factors.
    Description: Published
    Description: 1-34
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: open
    Keywords: earthquake triggering ; dynamic triggering ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-10
    Description: We forecast time-independent and time-dependent earthquake ruptures in the Marmara region of Turkey for the next 30 years using a new fault segmentation model. We also augment time-dependent Brownian passage time (BPT) probability with static Coulomb stress changes (ΔCFF) from interacting faults. We calculate Mw 〉 6.5 probability from 26 individual fault sources in the Marmara region. We also consider a multisegment rupture model that allows higher-magnitude ruptures over some segments of the northern branch of the North Anatolian Fault Zone beneath the Marmara Sea. A total of 10 different Mw = 7.0 to Mw = 8.0 multisegment ruptures are combined with the other regional faults at rates that balance the overall moment accumulation. We use Gaussian random distributions to treat parameter uncertainties (e.g., aperiodicity, maximum expected magnitude, slip rate, and consequently mean recurrence time) of the statistical distributions associated with each fault source. We then estimate uncertainties of the 30 year probability values for the next characteristic event obtained from three different models (Poisson, BPT, and BPT + ΔCFF) using a Monte Carlo procedure. The Gerede fault segment located at the eastern end of the Marmara region shows the highest 30 year probability, with a Poisson value of 29% and a time-dependent interaction probability of 48%. We find an aggregated 30 year Poisson probability of M 〉 7.3 earthquakes at Istanbul of 35%, which increases to 47% if time dependence and stress transfer are considered. We calculate a twofold probability gain (ratio time dependent to time independent) on the southern strands of the North Anatolian Fault Zone.
    Description: Published
    Description: 2679–2707
    Description: 5T. Modelli di pericolosità sismica e da maremoto
    Description: 6T. Variazioni delle caratteristiche crostali e precursori
    Description: JCR Journal
    Keywords: stress interaction ; Marmara region ; rupture forecast ; time-dependent and time-independent probability ; 04.06. Seismology ; 05.08. Risk ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-10
    Description: Earthquake forecasts are usually underinformed, and can be plagued by uncertainty in terms of the most appropriate model, and parameter values used in that model. In this paper, we explore the application of two different models to the same seismogenic area. The first is a renewal model based on the characteristic earthquake hypothesis that uses historical/palaeoseismic recurrence times, and fixed rupture geometries. The hazard rate is modified by the Coulomb static stress change caused by nearby earthquakes that occurred since the latest characteristic earthquake. The second model is a very simple earthquake simulator based on plate-motion, or fault-slip rates and adoption of a Gutenberg–Richter magnitude–frequency distribution. This information is commonly available even if historical and palaeoseismic recurrence data are lacking. The intention is to develop and assess a simulator that has a very limited parameter set that could be used to calculate earthquake rates in settings that are not as rich with observations of large-earthquake recurrence behaviour as the Nankai trough. We find that the use of convergence rate as a primary constraint allows the simulator to replicate much of the spatial distribution of observed segmented rupture rates along the Nankai, Tonankai and Tokai subduction zones. Although we note rate differences between the two forecast methods in the Tokai zone, we also see enough similarities between simulations and observations to suggest that very simple earthquake rupture simulations based on empirical data and fundamental earthquake laws could be useful forecast tools in information-poor settings.
    Description: Published
    Description: 1673-1688
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Time series analysis ; Spatial analysis ; Probability distributions ; Seismic cycle ; Earthquake interaction ; forecasting, and prediction ; Statistical seismology. ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: Applying probabilistic methods to infrequent but devastating natural events is intrinsically challenging. For tsunami analyses, a suite of geophysical assessments should be in principle evaluated because of the different causes generating tsunamis (earthquakes, landslides, volcanic activity, meteorological events, and asteroid impacts) with varying mean recurrence rates. Probabilistic Tsunami Hazard Analyses (PTHAs) are conducted in different areas of the world at global, regional, and local scales with the aim of understanding tsunami hazard to inform tsunami risk reduction activities. PTHAs enhance knowledge of the potential tsunamigenic threat by estimating the probability of exceeding specific levels of tsunami intensity metrics (e.g., run-up or maximum inundation heights) within a certain period of time (exposure time) at given locations (target sites); these estimates can be summarized in hazard maps or hazard curves. This discussion presents a broad overview of PTHA, including (i) sources and mechanisms of tsunami generation, emphasizing the variety and complexity of the tsunami sources and their generation mechanisms, (ii) developments in modeling the propagation and impact of tsunami waves, and (iii) statistical procedures for tsunami hazard estimates that include the associated epistemic and aleatoric uncertainties. Key elements in understanding the potential tsunami hazard are discussed, in light of the rapid development of PTHA methods during the last decade and the globally distributed applications, including the importance of considering multiple sources, their relative intensities, probabilities of occurrence, and uncertainties in an integrated and consistent probabilistic framework.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-30
    Description: The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH 〉5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH 〉3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH 〉1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 38 (1934), S. 713-714 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 76 (1954), S. 1710-1710 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...