ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2019
    Description: Abstract We quantify the spatiotemporal evolution of the substorm ionospheric current system utilizing the SuperMAG 100+ magnetometers. We construct dynamical directed networks from this data for the first time. If the canonical cross‐correlation between vector magnetic field perturbations observed at two magnetometer stations exceeds a threshold, they form a network connection. The time lag at which canonical cross‐correlation is maximal determines the direction of propagation or expansion of the structure captured by the network connection. If spatial correlation reflects ionospheric current patterns, network properties can test different models for the evolving substorm current system. We select 86 isolated substorms based on nightside ground station coverage. We find, and obtain the timings for, a consistent picture in which the classic substorm current wedge forms. A current system is seen premidnight following the substorm current wedge westward expansion. Later, there is a weaker signal of eastward expansion. Finally, there is evidence of substorm‐enhanced convection.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-07-31
    Description: The calibration of field instruments used to measure concentrations of OH and HO2 worldwide have traditionally relied on a single method utilising the photolysis of water vapour in air in a flow tube at atmospheric pressure. Here the calibration of two FAGE (Fluorescence Assay by Gaseous Expansion) apparatuses designed for HOx (OH and HO2) measurements have been investigated as a function of external pressure and temperature, using two different laser systems. The conventional method of generating known concentrations of HOx from H2O vapour photolysis in a turbulent flowtube impinging just outside the FAGE sample inlet has been used to study instrument sensitivity as a function of internal fluorescence cell pressure (1.8–3.8 mbar). An increase in the calibration constants COH and CHO2 with pressure was observed and an empirical linear regression of the data was used to describe the trends, with ΔCOH = (17 ± 11)% and ΔCHO2 = (31.6 ± 4.4)% increase per mbar air (uncertainties quoted to 2σ). Presented here are the first direct measurements of the FAGE calibration constants as a function of external pressure (440–1000 mbar) in a controlled environment using the University of Leeds HIRAC chamber (Highly Instrumented Reactor for Atmospheric Chemistry). Two methods were used: the temporal decay of hydrocarbons for calibration of OH, and the kinetics of the second-order recombination of HO2 for HO2 calibrations. Over comparable conditions for the FAGE cell, the two alternative methods are in good agreement with the conventional method, with the average ratio of calibration factors (conventional : alternative) across the entire pressure range COH(conv)/COH(alt) = 1.19 ± 0.26 and CHO2(conv)/CHO2(alt) = 0.96 ± 0.18 (2σ). These alternative calibration methods currently have comparable systematic uncertainties than the conventional method: ~28% and ~41% for the alternative OH and HO2 calibration methods respectively compared to 35% for the H2O vapour photolysis method; ways in which these can be reduced in the future are discussed. The good agreement between the very different methods of calibration leads to increased confidence in HOx field measurements and particularly in aircraft based HOx measurements, where there are substantial variations in external pressure, and assumptions are made regarding loss rates on inlets as a function of pressure.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-23
    Description: The reaction CH3C(O)O2 + HO2 → CH3C(O)OOH + O2 (Reaction R5a), CH3C(O)OH + O3 (Reaction R5b), CH3 + CO2 + OH + O2 (Reaction R5c) was studied in a series of experiments conducted at 1000 mbar and (293 ± 2) K in the HIRAC simulation chamber. For the first time, products, (CH3C(O)OOH, CH3C(O)OH, O3 and OH) from all three branching pathways of the reaction have been detected directly and simultaneously. Measurements of radical precursors (CH3OH, CH3CHO), HO2 and some secondary products HCHO and HCOOH further constrained the system. Fitting a comprehensive model to the experimental data, obtained over a range of conditions, determined the branching ratios α(R5a) = 0.37 ± 0.10, α(R5b) = 0.12 ± 0.04 and α(R5c) = 0.51 ± 0.12 (errors at 2σ level). Improved measurement/model agreement was achieved using k(R5) = (2.4 ± 0.4) × 10-11 cm3 molecule-1 s-1, which is within the large uncertainty of the current IUPAC and JPL recommended rate coefficients for the title reaction. The rate coefficient and branching ratios are in good agreement with a recent study performed by Groß et al. (2014b); taken together, these two studies show that the rate of OH regeneration through Reaction (R5) is more rapid than previously thought. GEOS-Chem has been used to assess the implications of the revised rate coefficients and branching ratios; the modelling shows an enhancement of up to 5 % in OH concentrations in tropical rainforest areas and increases of up to 10 % at altitudes of 6–8 km above the equator, compared to calculations based on the IUPAC recommended rate coefficient and yield. The enhanced rate of acetylperoxy consumption significantly reduces PAN in remote regions (up to 30 %) with commensurate reductions in background NOx.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-03
    Description: The calibration of field instruments used to measure concentrations of OH and HO2 worldwide has traditionally relied on a single method utilising the photolysis of water vapour in air in a flow tube at atmospheric pressure. Here the calibration of two FAGE (fluorescence assay by gaseous expansion) apparatuses designed for HOx (OH and HO2) measurements have been investigated as a function of external pressure using two different laser systems. The conventional method of generating known concentrations of HOx from H2O vapour photolysis in a turbulent flow tube impinging just outside the FAGE sample inlet has been used to study instrument sensitivity as a function of internal fluorescence cell pressure (1.8–3.8 mbar). An increase in the calibration constants CHO and CHO2 with pressure was observed, and an empirical linear regression of the data was used to describe the trends, with ΔCHO = (17 ± 11) % and ΔCHO2 = (31.6 ± 4.4)% increase per millibar air (uncertainties quoted to 2σ). Presented here are the first direct measurements of the FAGE calibration constants as a function of external pressure (440–1000 mbar) in a controlled environment using the University of Leeds HIRAC chamber (Highly Instrumented Reactor for Atmospheric Chemistry). Two methods were used: the temporal decay of hydrocarbons for calibration of OH, and the kinetics of the second-order recombination of HO2 for HO2 calibrations. Over comparable conditions for the FAGE cell, the two alternative methods are in good agreement with the conventional method, with the average ratio of calibration factors (conventional : alternative) across the entire pressure range, COH(conv)/COH(alt) = 1.19 ± 0.26 and CHO2(conv)/CHO2(alt) = 0.96 ± 0.18 (2σ). These alternative calibration methods currently have comparable systematic uncertainties to the conventional method: ~ 28% and ~ 41% for the alternative OH and HO2 calibration methods respectively compared to 35% for the H2O vapour photolysis method; ways in which these can be reduced in the future are discussed. The good agreement between the very different methods of calibration leads to increased confidence in HOx field measurements and particularly in aircraft-based HOx measurements, where there are substantial variations in external pressure, and assumptions are made regarding loss rates on inlets as a function of pressure.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...