ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Treat, Claire C; Jones, Miriam C; Camill, Philip; Gallego-Sala, Angela V; Garneau, Michelle; Harden, Jennifer W; Hugelius, Gustaf; Klein, Eric S; Kokfelt, Ulla; Kuhry, Peter; Loisel, Julie; Mathijssen, Paul J H; O'Donnell, Jonathan A; Oksanen, Pirita O; Ronkainen, Tiina M; Sannel, A Britta K; Talbot, Julie; Tarnocai, Charles; Väliranta, Minna (2016): Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils. Journal of Geophysical Research: Biogeosciences, 121(1), 78-94, https://doi.org/10.1002/2015JG003061
    Publication Date: 2024-01-27
    Description: Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, C/N ratio) and C accumulation rates among vegetation types and environmental classes.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-14
    Keywords: Aero_1; Aero_core1; AGE; Alaska, USA; Alberta, Canada; Antoine_Lake; Author(s); Baillie_Bog; Bathurst_Island; Beauval; Biological sample; BIOS; Bonanza_Creek; Boniface_river; Bulmer_Lake; Burgistoye_Bog; Bylot_Island; Campbell_Creek; Canada; Canadian Arctic; Carbon, total; Chernaya_Gorka; Chorkurdakh; Classification; Clear_lake; Code; College_Bog; Core2; Crimson_lake; CSAT; Density, dry bulk; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DOT; Ennadai_Lake; Event label; Finland; Fosheim; Grafe_River; Height above sea floor/altitude; Herbaceous taxa; Herchmer; Horn_Plateau; Horse_Trail; Hudson Bay; Humification index; Identification; Indico; Innoko; Inuvik; Inuvik_East; James_Bay_Transect; Jean-Marie_Creek; Joey_Lake; Kazache; Kenai_Gasfield; Kenai_Gasfield_coreKG07-2; KFA906; KHOCHO; Khocho, Russia; Khosedayu; Kineosheo; KM184; Koyukuk; KUJU_PD2; KUJU-PD2_core1; Kukjuk; Kunyok_bog; Kwakwatanikapistikw; Kwethluk; La_Grande_Riviere-LG1; La_Grande_Riviere-LG2; La_Grande_Riviere-LG3; Lac_des_Becassines; Lac_des_Cygnes_Mountain; Lac_Le_Caron; Lac_Le_Caron_coreCentral; Lama_Lake; LATITUDE; Lithology/composition/facies; LOA_T1; LOA_T5; LOA_T6; LONGITUDE; Loss on ignition; LVPS_4-5B; Lynn_lake; MacKenzie_Delta; Manitoba, Canada; Martin_River; McClintock; MON; Monitoring; Mosaik; Mosaik_coreCentral; Moss; MULT; Multiple investigations; Nastapoca; Nitrogen, total; No_Name_Creek_coreNNC07-1; No-Name_Creek; NormanWells; Nuikluk; Nyulsaveito_Lake; OBSE; Observation; Ortino_peat_pl; Ours; OUTCROP; Outcrop sample; Peat; PEATC; Peat corer; Pechora area, NE Baltic; Petersville; Petersville_corePE08-MC; PF-3; PF-8; Polybog; Position; Pur-Taz; Pyasina; QUEEN_Exped; Radisson; Rainbow_Lake; Reference/source; Remote sensing (Corona); Rogovaya; Russia; Rybachiya_bog; Sasapimakwananistik; Seida; Selwyn_core1; Selwyn_Lake; Seward_Peninsula; Sheldrake; Site; Slave_core1; Slave_Lake; Southern_Piper_Pass; Species; Sphagnum; Sterne; Stordalen_1; Stordalen_core1; Sugluk; Suolakh; Swanson_core1; Swanson_fen; Sweden; T27C; T28A; T35A-B; T36C-D; T5A; TC-01; TFBC; Thelon-Kazan_Peatland; Three_Day_Lake; Tiksi; Town_site; Tuktoyaktuk; Umiakoviarusek; United States of America; Upper_Pinto; Upper_Pinto_core1; Usa River basin, Northeast European Russia; Usinsk_Mire; Vaisjeaggi1/Va-l; von Post method, degree of peat humification (Stanek and Silc, 1977); Western Siberia; Willow_Lake_River; Woody taxa; Wrigley_Ferry; Y1-73; Zama_lake; Zhukovskoe; ZOL-1970-1; ZOL-1970-10; ZOL-1970-11; ZOL-1970-12; ZOL-1970-13; ZOL-1970-14; ZOL-1970-15; ZOL-1970-16; ZOL-1970-17; ZOL-1970-18; ZOL-1970-19; ZOL-1970-2; ZOL-1970-20; ZOL-1970-21; ZOL-1970-22; ZOL-1970-23; ZOL-1970-24; ZOL-1970-25; ZOL-1970-26; ZOL-1970-27; ZOL-1970-28; ZOL-1970-29; ZOL-1970-3; ZOL-1970-30; ZOL-1970-31; ZOL-1970-32; ZOL-1970-4; ZOL-1970-5; ZOL-1970-6; ZOL-1970-7; ZOL-1970-8; ZOL-1970-9; ZOL-1971-1; ZOL-1971-10; ZOL-1971-11; ZOL-1971-12; ZOL-1971-13; ZOL-1971-14; ZOL-1971-15; ZOL-1971-16; ZOL-1971-17; ZOL-1971-18; ZOL-1971-19; ZOL-1971-2; ZOL-1971-20; ZOL-1971-21; ZOL-1971-22; ZOL-1971-23; ZOL-1971-24; ZOL-1971-25; ZOL-1971-26; ZOL-1971-27; ZOL-1971-28; ZOL-1971-29; ZOL-1971-3; ZOL-1971-30; ZOL-1971-31; ZOL-1971-32; ZOL-1971-33; ZOL-1971-35; ZOL-1971-36; ZOL-1971-4; ZOL-1971-5; ZOL-1971-6; ZOL-1971-7; ZOL-1971-8; ZOL-1971-9; ZOL-1972-1; ZOL-1972-10; ZOL-1972-11; ZOL-1972-12; ZOL-1972-13; ZOL-1972-14; ZOL-1972-15; ZOL-1972-16; ZOL-1972-17; ZOL-1972-18; ZOL-1972-19; ZOL-1972-2; ZOL-1972-20; ZOL-1972-21; ZOL-1972-22; ZOL-1972-23; ZOL-1972-24; ZOL-1972-25; ZOL-1972-26; ZOL-1972-27; ZOL-1972-28; ZOL-1972-3; ZOL-1972-30; ZOL-1972-4; ZOL-1972-6; ZOL-1972-7; ZOL-1972-8; ZOL-1972-9; ZOL-1973-1; ZOL-1973-10; ZOL-1973-11; ZOL-1973-12; ZOL-1973-13; ZOL-1973-14; ZOL-1973-15; ZOL-1973-16; ZOL-1973-17; ZOL-1973-18; ZOL-1973-19; ZOL-1973-20; ZOL-1973-21; ZOL-1973-22; ZOL-1973-23; ZOL-1973-24; ZOL-1973-5; ZOL-1973-7; ZOL-1973-8; ZOL-1973-9; ZOL-1975-10; ZOL-1976-8; ZOL-1977-20; ZOL-1977-4; ZOL-1981-1; ZOL-1981-10; ZOL-1981-11; ZOL-1981-12; ZOL-1981-13; ZOL-1981-14; ZOL-1981-15; ZOL-1981-16; ZOL-1981-17; ZOL-1981-18; ZOL-1981-19; ZOL-1981-2; ZOL-1981-20; ZOL-1981-21; ZOL-1981-22; ZOL-1981-23; ZOL-1981-24; ZOL-1981-25; ZOL-1981-26; ZOL-1981-27; ZOL-1981-28; ZOL-1981-29; ZOL-1981-3; ZOL-1981-30; ZOL-1981-31; ZOL-1981-32; ZOL-1981-33; ZOL-1981-34; ZOL-1981-35; ZOL-1981-36; ZOL-1981-37; ZOL-1981-38; ZOL-1981-39; ZOL-1981-4; ZOL-1981-40; ZOL-1981-41; ZOL-1981-42; ZOL-1981-43; ZOL-1981-44; ZOL-1981-45; ZOL-1981-46; ZOL-1981-47; ZOL-1981-48; ZOL-1981-49; ZOL-1981-5; ZOL-1981-50; ZOL-1981-51; ZOL-1981-52; ZOL-1981-53; ZOL-1981-54; ZOL-1981-55; ZOL-1981-56; ZOL-1981-57; ZOL-1981-58; ZOL-1981-59; ZOL-1981-6; ZOL-1981-60; ZOL-1981-7; ZOL-1981-8; ZOL-1981-9; ZOL-1982-1; ZOL-1982-10; ZOL-1982-11; ZOL-1982-12; ZOL-1982-13; ZOL-1982-14; ZOL-1982-15; ZOL-1982-16; ZOL-1982-17; ZOL-1982-18; ZOL-1982-19; ZOL-1982-2; ZOL-1982-20; ZOL-1982-21; ZOL-1982-22; ZOL-1982-23; ZOL-1982-24; ZOL-1982-25; ZOL-1982-26; ZOL-1982-27; ZOL-1982-28; ZOL-1982-29; ZOL-1982-3; ZOL-1982-30; ZOL-1982-31; ZOL-1982-32; ZOL-1982-33; ZOL-1982-34; ZOL-1982-35; ZOL-1982-36; ZOL-1982-37; ZOL-1982-38; ZOL-1982-39; ZOL-1982-4; ZOL-1982-40; ZOL-1982-41; ZOL-1982-42; ZOL-1982-43; ZOL-1982-44; ZOL-1982-45; ZOL-1982-46; ZOL-1982-47; ZOL-1982-48; ZOL-1982-49; ZOL-1982-5; ZOL-1982-50; ZOL-1982-51; ZOL-1982-52; ZOL-1982-53; ZOL-1982-54; ZOL-1982-55; ZOL-1982-56; ZOL-1982-57; ZOL-1982-58; ZOL-1982-59; ZOL-1982-6; ZOL-1982-60; ZOL-1982-61; ZOL-1982-62; ZOL-1982-63; ZOL-1982-64; ZOL-1982-65; ZOL-1982-7; ZOL-1982-8; ZOL-1982-9; ZOL-1983-1; ZOL-1983-10; ZOL-1983-11; ZOL-1983-12; ZOL-1983-13; ZOL-1983-14; ZOL-1983-15; ZOL-1983-16; ZOL-1983-17; ZOL-1983-18; ZOL-1983-19; ZOL-1983-2; ZOL-1983-20; ZOL-1983-21; ZOL-1983-22; ZOL-1983-23; ZOL-1983-24; ZOL-1983-25; ZOL-1983-26; ZOL-1983-27; ZOL-1983-28; ZOL-1983-29; ZOL-1983-3; ZOL-1983-30; ZOL-1983-31; ZOL-1983-32; ZOL-1983-33; ZOL-1983-34; ZOL-1983-35; ZOL-1983-36; ZOL-1983-37; ZOL-1983-38; ZOL-1983-39; ZOL-1983-4; ZOL-1983-40; ZOL-1983-41; ZOL-1983-42; ZOL-1983-43; ZOL-1983-44; ZOL-1983-45; ZOL-1983-46; ZOL-1983-47; ZOL-1983-48; ZOL-1983-49; ZOL-1983-5; ZOL-1983-50; ZOL-1983-51; ZOL-1983-52; ZOL-1983-53; ZOL-1983-54; ZOL-1983-55; ZOL-1983-56; ZOL-1983-57; ZOL-1983-58; ZOL-1983-59; ZOL-1983-6; ZOL-1983-7; ZOL-1983-8; ZOL-1983-9; ZOL-1984-1; ZOL-1984-10; ZOL-1984-11; ZOL-1984-12; ZOL-1984-13; ZOL-1984-14; ZOL-1984-15; ZOL-1984-16; ZOL-1984-17; ZOL-1984-18; ZOL-1984-19; ZOL-1984-2; ZOL-1984-20; ZOL-1984-21; ZOL-1984-22; ZOL-1984-23; ZOL-1984-24; ZOL-1984-25; ZOL-1984-26; ZOL-1984-27; ZOL-1984-28; ZOL-1984-29; ZOL-1984-3; ZOL-1984-30; ZOL-1984-31; ZOL-1984-32; ZOL-1984-33; ZOL-1984-34; ZOL-1984-35; ZOL-1984-36; ZOL-1984-37; ZOL-1984-38; ZOL-1984-39; ZOL-1984-4; ZOL-1984-40; ZOL-1984-41; ZOL-1984-42; ZOL-1984-43; ZOL-1984-44; ZOL-1984-45; ZOL-1984-46; ZOL-1984-47; ZOL-1984-48; ZOL-1984-49; ZOL-1984-5; ZOL-1984-50; ZOL-1984-51; ZOL-1984-52; ZOL-1984-53; ZOL-1984-54; ZOL-1984-55; ZOL-1984-56; ZOL-1984-57; ZOL-1984-58; ZOL-1984-59; ZOL-1984-6; ZOL-1984-60; ZOL-1984-61; ZOL-1984-62; ZOL-1984-63; ZOL-1984-64; ZOL-1984-65; ZOL-1984-66; ZOL-1984-67; ZOL-1984-68; ZOL-1984-69; ZOL-1984-7; ZOL-1984-70; ZOL-1984-71; ZOL-1984-72; ZOL-1984-73; ZOL-1984-74; ZOL-1984-75; ZOL-1984-76; ZOL-1984-8; ZOL-1984-9; ZOL-1989-1; ZOL-1989-10; ZOL-1989-11; ZOL-1989-13; ZOL-1989-14; ZOL-1989-15; ZOL-1989-16; ZOL-1989-17; ZOL-1989-18; ZOL-1989-19; ZOL-1989-3; ZOL-1989-4; ZOL-1989-5; ZOL-1989-6; ZOL-1989-8; ZOL-1989-9
    Type: Dataset
    Format: text/tab-separated-values, 263490 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-14
    Keywords: 07-SA-LY_ABCD_1-6; Abisko, Lappland, northern Sweden; Aero_1; Aero_core1; Age, dated; Age, dated material; Age, dated standard error; Alaska, USA; Alberta, Canada; Antoine_Lake; Author(s); AWI Arctic Land Expedition; Baillie_Bog; Bathurst_Island; Beauval; BGS_980; Biological sample; BIOS; Bonanza_Creek; Boniface_river; Bulmer_Lake; Burgistoye_Bog; Bylot_Island; Campbell_Creek; Canada; Canadian Arctic; Chernaya_Gorka; Chorkurdakh; Clear_lake; College_Bog; Core; Crimson_lake; CSAT; DEPTH, sediment/rock; Dyanushka K7P2; Ennadai_Lake; Event label; Finland; Fosheim; Grafe_River; GSC_GaK; Height above sea floor/altitude; Herchmer; Horn_Plateau; Horse_Trail; Hudson Bay; Identification; Indico; Innoko; Inuvik; Inuvik_East; James_Bay_Transect; Joey_Lake; K7P2; Kazache; Kenai_Gasfield; Kenai_Gasfield_coreKG07-2; KFA906; Khosedayu; Kineosheo; KM184; Koyukuk; KUJU_PD2; KUJU-PD2_core1; Kukjuk; Kunyok_bog; Kwakwatanikapistikw; Kwethluk; La_Grande_Riviere-LG1; La_Grande_Riviere-LG2; La_Grande_Riviere-LG3; Laboratory code/label; Lac_des_Becassines; Lac_des_Cygnes_Mountain; Lac_Le_Caron; Lac_Le_Caron_coreCentral; Laivadalen; Lama_Lake; LATITUDE; LOA_T1; LOA_T5; LOA_T6; LONGITUDE; LVPS_4-5B; Lynn_lake; MacKenzie_Delta; Manitoba, Canada; Martin_River; McClintock; Method comment; MON; Monitoring; Mosaik; Mosaik_coreCentral; MULT; Multiple investigations; Nastapoca; Natla; No_Name_Creek_coreNNC07-1; No-Name_Creek; NormanWells; NOVO-USP; Novo-Uspenka, Russia; Nuikluk; Nyulsaveito_Lake; OBSE; Observation; Ortino_peat_pl; Ours; OUTCROP; Outcrop sample; PEATC; Peat corer; Pechora area, NE Baltic; Petersville; Petersville_corePE08-MC; PF-8; Polybog; Pur-Taz; Pyasina; QUEEN_Exped; Radisson; Rainbow_Lake; Reference/source; Remote sensing (Corona); Rogovaya; RPS; RU-Land_2007_Yakutia; RUSC; Russia; Russian corer; Russian peat sampler; Rybachiya_bog; Sample thickness; Sasapimakwananistik; Seida; Selwyn_core1; Selwyn_Lake; Seward_Peninsula; Sharyu; Sheldrake; Site; Slave_core1; Slave_Lake; Southern_Piper_Pass; Sterne; Stordalen_1; Stordalen_core1; Subarctic; Sugluk; Suolakh; Swanson_core1; Swanson_fen; Sweden; T28A; T35A-B; TC-01; TFBC; Thelon-Kazan_Peatland; Three_Day_Lake; Tiksi; Town_site; Tuktoyaktuk; Umiakoviarusek; United States of America; Upper_Pinto; Upper_Pinto_core1; Usa River basin, Northeast European Russia; Usinsk_Mire; Vaisjeaggi1/Va-l; Western Siberia; Willow_Lake_River; Wrigley_Ferry; Yakutia2007; Yakutsk, Russia; Zama_lake; Zhukovskoe
    Type: Dataset
    Format: text/tab-separated-values, 15879 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-14
    Keywords: Aero_1; Aero_core1; AGE; Age, error; Age, lower confidence level; Age, upper confidence level; Age model; Alaska, USA; Analysis; Antoine_Lake; Baillie_Bog; Bathurst_Island; Biological sample; BIOS; Bonanza_Creek; Bulmer_Lake; Burgistoye_Bog; Bylot_Island; Campbell_Creek; Canada; Canadian Arctic; Chernaya_Gorka; Chorkurdakh; College_Bog; Comment; Core; CSAT; DEPTH, sediment/rock; DOT; Ennadai_Lake; Event label; Finland; Fosheim; Grafe_River; Height above sea floor/altitude; Herchmer; Horn_Plateau; Identification; Innoko; Inuvik; Inuvik_East; James_Bay_Transect; Jean-Marie_Creek; Joey_Lake; Kazache; KFA906; Khosedayu; Kineosheo; KM184; Koyukuk; KUJU_PD2; KUJU-PD2_core1; Kukjuk; Kunyok_bog; Kwakwatanikapistikw; Kwethluk; La_Grande_Riviere-LG1; La_Grande_Riviere-LG2; La_Grande_Riviere-LG3; Laboratory code/label; Lac_des_Becassines; Lac_des_Cygnes_Mountain; Lac_Le_Caron; Lac_Le_Caron_coreCentral; Lama_Lake; LATITUDE; LOA_T1; LOA_T5; LOA_T6; LONGITUDE; LVPS_4-5B; MacKenzie_Delta; Manitoba, Canada; Martin_River; McClintock; MON; Monitoring; Mosaik; Mosaik_coreCentral; MULT; Multiple investigations; N4-73; NormanWells; Nuikluk; Number; Nyulsaveito_Lake; OBSE; Observation; Ortino_peat_pl; Ours; OUTCROP; Outcrop sample; PEATC; Peat corer; Petersville; Petersville_corePE08-MC; PF-3; PF-8; Polybog; Pur-Taz; Pyasina; QUEEN_Exped; Radisson; Rainbow_Lake; Reference/source; Remote sensing (Corona); Rogovaya; Russia; Rybachiya_bog; Sasapimakwananistik; Seida; Selwyn_core1; Selwyn_Lake; Seward_Peninsula; Sheldrake; Site; Slave_core1; Slave_Lake; Southern_Piper_Pass; Sterne; Stordalen_1; Stordalen_core1; Sugluk; Suolakh; Sweden; T27C; T28A; T35A-B; T36C-D; T5A; TC-01; TFBC; Thelon-Kazan_Peatland; Three_Day_Lake; Tiksi; Town_site; Tuktoyaktuk; Umiakoviarusek; United States of America; Upper_Pinto; Upper_Pinto_core1; Usa River basin, Northeast European Russia; Usinsk_Mire; Vaisjeaggi1/Va-l; Western Siberia; Willow_Lake_River; Wrigley_Ferry; Y1-73; Zhukovskoe; ZOL-1970-1; ZOL-1970-10; ZOL-1970-11; ZOL-1970-12; ZOL-1970-13; ZOL-1970-14; ZOL-1970-15; ZOL-1970-16; ZOL-1970-17; ZOL-1970-18; ZOL-1970-19; ZOL-1970-2; ZOL-1970-20; ZOL-1970-21; ZOL-1970-22; ZOL-1970-23; ZOL-1970-24; ZOL-1970-25; ZOL-1970-26; ZOL-1970-27; ZOL-1970-28; ZOL-1970-29; ZOL-1970-3; ZOL-1970-30; ZOL-1970-31; ZOL-1970-32; ZOL-1970-4; ZOL-1970-5; ZOL-1970-6; ZOL-1970-7; ZOL-1970-8; ZOL-1970-9; ZOL-1971-1; ZOL-1971-10; ZOL-1971-11; ZOL-1971-12; ZOL-1971-13; ZOL-1971-14; ZOL-1971-15; ZOL-1971-16; ZOL-1971-17; ZOL-1971-18; ZOL-1971-19; ZOL-1971-2; ZOL-1971-20; ZOL-1971-21; ZOL-1971-22; ZOL-1971-23; ZOL-1971-24; ZOL-1971-25; ZOL-1971-26; ZOL-1971-27; ZOL-1971-28; ZOL-1971-29; ZOL-1971-3; ZOL-1971-30; ZOL-1971-31; ZOL-1971-32; ZOL-1971-33; ZOL-1971-35; ZOL-1971-36; ZOL-1971-4; ZOL-1971-5; ZOL-1971-6; ZOL-1971-7; ZOL-1971-8; ZOL-1971-9; ZOL-1972-1; ZOL-1972-10; ZOL-1972-11; ZOL-1972-12; ZOL-1972-13; ZOL-1972-14; ZOL-1972-15; ZOL-1972-16; ZOL-1972-17; ZOL-1972-18; ZOL-1972-19; ZOL-1972-2; ZOL-1972-20; ZOL-1972-21; ZOL-1972-22; ZOL-1972-23; ZOL-1972-24; ZOL-1972-25; ZOL-1972-26; ZOL-1972-27; ZOL-1972-28; ZOL-1972-3; ZOL-1972-30; ZOL-1972-4; ZOL-1972-6; ZOL-1972-7; ZOL-1972-8; ZOL-1972-9; ZOL-1973-1; ZOL-1973-10; ZOL-1973-11; ZOL-1973-12; ZOL-1973-13; ZOL-1973-14; ZOL-1973-15; ZOL-1973-16; ZOL-1973-17; ZOL-1973-18; ZOL-1973-19; ZOL-1973-20; ZOL-1973-21; ZOL-1973-22; ZOL-1973-23; ZOL-1973-24; ZOL-1973-5; ZOL-1973-7; ZOL-1973-8; ZOL-1973-9; ZOL-1975-10; ZOL-1976-8; ZOL-1977-20; ZOL-1977-4; ZOL-1981-12; ZOL-1981-21; ZOL-1981-34; ZOL-1982-12; ZOL-1982-13; ZOL-1982-17; ZOL-1982-18; ZOL-1982-20; ZOL-1982-24; ZOL-1982-29; ZOL-1982-30; ZOL-1982-31; ZOL-1982-32; ZOL-1982-33; ZOL-1982-34; ZOL-1982-35; ZOL-1982-36; ZOL-1982-37; ZOL-1982-38; ZOL-1982-39; ZOL-1982-40; ZOL-1982-41; ZOL-1982-42; ZOL-1982-43; ZOL-1982-44; ZOL-1982-45; ZOL-1982-46; ZOL-1982-47; ZOL-1982-48; ZOL-1982-49; ZOL-1982-50; ZOL-1982-51; ZOL-1982-52; ZOL-1982-53; ZOL-1982-54; ZOL-1982-55; ZOL-1982-56; ZOL-1982-57; ZOL-1982-58; ZOL-1982-59; ZOL-1982-6; ZOL-1982-60; ZOL-1982-61; ZOL-1982-62; ZOL-1982-63; ZOL-1982-64; ZOL-1982-65; ZOL-1984-10; ZOL-1984-11; ZOL-1984-12; ZOL-1984-13; ZOL-1984-14; ZOL-1984-15; ZOL-1984-16; ZOL-1984-17; ZOL-1984-18; ZOL-1984-19; ZOL-1984-20; ZOL-1984-39; ZOL-1984-40; ZOL-1984-41; ZOL-1984-42; ZOL-1984-43; ZOL-1984-44; ZOL-1984-45; ZOL-1984-46; ZOL-1984-47; ZOL-1984-48; ZOL-1984-49; ZOL-1984-50; ZOL-1984-51; ZOL-1984-52; ZOL-1984-53; ZOL-1984-54; ZOL-1984-55; ZOL-1984-7; ZOL-1984-8; ZOL-1984-9; ZOL-1989-1; ZOL-1989-10; ZOL-1989-11; ZOL-1989-13; ZOL-1989-14; ZOL-1989-15; ZOL-1989-16; ZOL-1989-17; ZOL-1989-18; ZOL-1989-19; ZOL-1989-3; ZOL-1989-4; ZOL-1989-5; ZOL-1989-6; ZOL-1989-8; ZOL-1989-9
    Type: Dataset
    Format: text/tab-separated-values, 6266 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-23
    Description: Ecosystem shifts related to climate change are anticipated for the next decades to centuries based on a number of conceptual and experimentally derived models of plant structure and function. Belowground, the potential responses of soil systems are less well known. We used geochemical steady state models, soil density fractionation, and soil radiocarbon data to constrain changes in soil carbon based on measurements from detrital (free light), aggregate-bound (occluded) and complexed or chemically bound (mineral associated) carbon pools and for bulk soil. We explored a space-for-time sequence of soils along a cold-to-warm climatic gradient from Alaskan Black Spruce forest soil with permafrost (Gelisols; 50 cm Mean Annual Temperature −1.5 ºC), Alaskan White Spruce forest soil lacking permafrost (Inceptisols; 50 cm MAT +3 ºC ), and Iowa Grassland soil lacking permafrost (Mollisols; 50 cm MAT +9 ºC) developed on similar geologic substrates (wind-blown loess deposits). These temperature ranges were also representative of temperatures at 50 cm soil depth from model output by the Community Land Model for the years 2014, 2100, and 2300 for Interior Alaska. Fitting an exponential equation to depth trends in soil C down to 2 m depths, we found that depth distributions of organic C were related mainly to depths of rooting and changes in bulk density. Using output from the geochemical steady state model, the direction and magnitude of the C loss or gain upon ecosystem shift was dictated by the C stocks of initial and final ecosystems. Radiocarbon measurements specific to each soil fraction (free light, occluded, and mineral associated) allowed us to constrain the timing of the potential loss or gain of C in each fraction driven by climatic shifts. Thawing from the Gelisol to Inceptisol in loess parent materials from present day to year 2100 resulted in small net gains to soil C, reflecting the net balance between loss of detrital and gain into occluded and mineral associated C. Greater warming and shifts from Inceptisol to Mollisol analogous to predicted warming from circa 2100 to 2300 resulted in net C losses from both occluded and mineral associated C, although small gains to the free light C fraction occurred throughout the depth profile. Gains to occluded and mineral associated C post- thaw likely reflect aggregate formation and physical protection of C as well as formation of organo-mineral compounds that accompany microbial processing. Greater warming and shifts from Inceptisol to Mollisol, which are analogous to predicted warming circa 2100 to 2300, resulted in net C losses from both occluded and mineral associated C resulting from enhanced decomposition, small gains to the free light C fraction occurred throughout the transition to Mollisol reflecting deeper rooting of the tallgrass prairie system.
    Electronic ISSN: 2199-3998
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-05-07
    Description: Permafrost soils in arctic and boreal ecosystems store twice the amount of current atmospheric carbon that may be mobilized and released to the atmosphere as greenhouse gases when soils thaw under a warming climate. This permafrost carbon climate feedback is among the most globally important terrestrial biosphere feedbacks to climate warming, yet its magnitude remains highly uncertain. This uncertainty lies in predicting the rates and spatial extent of permafrost thaw and subsequent carbon cycle processes. Terrestrial ecosystem influences on surface energy partitioning exert strong control on permafrost soil thermal dynamics and are critical for understanding permafrost soil responses to climate change and disturbance. Here we review how arctic and boreal ecosystem processes influence permafrost soils and characterize key ecosystem changes that regulate permafrost responses to climate. While many of the ecosystem characteristics and processes affecting soil thermal dynamics have been examined in isolation, interactions between processes are less well understood. In particular connections between vegetation, soil moisture, and soil thermal properties affecting permafrost conditions could benefit from additional research. In particular, connections between vegetation, soil moisture, and soil thermal properties affecting permafrost could benefit from additional research. Changes in ecosystem distribution and vegetation characteristics will alter spatial patterns of interactions between climate and permafrost. In addition to shrub expansion, other vegetation responses to changes in climate and disturbance regimes will all affect ecosystem surface energy partitioning in ways that are important for permafrost. Lastly, changes in vegetation and ecosystem distribution will lead to regional and global biophysical and biogeochemical climate feedbacks that may compound or offset local impacts on permafrost soils. Consequently, accurate prediction of the permafrost carbon climate feedback will require detailed understanding of changes in terrestrial ecosystem distribution and function and the net effects of multiple feedback processes operating across scales in space and time.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-15
    Description: Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (〉 40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-07-05
    Description: The magnitude of future emissions of greenhouse gases from the northern permafrost region depends crucially on the mineralization of soil organic carbon (SOC) that has accumulated over millennia in these perennially frozen soils. Many recent studies have used radiocarbon (14C) to quantify the release of this “old” SOC as CO2 or CH4 to the atmosphere or as dissolved and particulate organic carbon (DOC and POC) to surface waters. We compiled ~1,900 14C measurements from 51 sites in the northern permafrost region to assess the vulnerability of thawing SOC in tundra, forest, peatland, lake, and river ecosystems. We found that growing season soil 14C‐CO2 emissions generally had a modern (post‐1950s) signature, but that well‐drained, oxic soils had increased CO2 emissions derived from older sources following recent thaw. The age of CO2 and CH4 emitted from lakes depended primarily on the age and quantity of SOC in sediments and on the mode of emission, and indicated substantial losses of previously frozen SOC from actively expanding thermokarst lakes. Increased fluvial export of aged DOC and POC occurred from sites where permafrost thaw caused soil thermal erosion. There was limited evidence supporting release of previously frozen SOC as CO2, CH4, and DOC from thawing peatlands with anoxic soils. This synthesis thus suggests widespread but not universal release of permafrost SOC following thaw. We show that different definitions of “old” sources among studies hamper the comparison of vulnerability of permafrost SOC across ecosystems and disturbances. We also highlight opportunities for future 14C studies in the permafrost region.
    Description: Key Points: We compiled ~1,900 14C measurements of CO2, CH4, DOC, and POC from the northern permafrost region. Old carbon release increases in thawed oxic soils (CO2), thermokarst lakes (CH4 and CO2), and headwaters with thermal erosion (DOC and POC). Simultaneous and year‐long 14C analyses of CO2, CH4, DOC, and POC are needed to assess the vulnerability of permafrost carbon across ecosystems.
    Description: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) http://dx.doi.org/10.13039/100010663
    Description: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (NSERC) http://dx.doi.org/10.13039/501100000038
    Description: National Science Foundation (NSF) http://dx.doi.org/10.13039/100000001
    Keywords: 551.9 ; permafrost thaw ; radiocarbon ; carbon dioxide ; methane ; dissolved organic carbon ; particulate organic carbon
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-04
    Description: Soils and other unconsolidated deposits in the northern circumpolar permafrost region store large amounts of soil organic carbon (SOC). This SOC is potentially vulnerable to remobilization following soil warming and permafrost thaw, but SOC stock estimates were poorly constrained and quantitative error estimates were lacking. This study presents revised estimates of permafrost SOC stocks, including quantitative uncertainty estimates, in the 0–3 m depth range in soils as well as for sediments deeper than 3 m in deltaic deposits of major rivers and in the Yedoma region of Siberia and Alaska. Revised estimates are based on significantly larger databases compared to previous studies. Despite this there is evidence of significant remaining regional data gaps. Estimates remain particularly poorly constrained for soils in the High Arctic region and physiographic regions with thin sedimentary overburden (mountains, highlands and plateaus) as well as for deposits below 3 m depth in deltas and the Yedoma region. While some components of the revised SOC stocks are similar in magnitude to those previously reported for this region, there are substantial differences in other components, including the fraction of perennially frozen SOC. Upscaled based on regional soil maps, estimated permafrost region SOC stocks are 217 ± 12 and 472 ± 27 Pg for the 0–0.3 and 0–1 m soil depths, respectively (±95% confidence intervals). Storage of SOC in 0–3 m of soils is estimated to 1035 ± 150 Pg. Of this, 34 ± 16 Pg C is stored in poorly developed soils of the High Arctic. Based on generalized calculations, storage of SOC below 3 m of surface soils in deltaic alluvium of major Arctic rivers is estimated as 91 ± 52 Pg. In the Yedoma region, estimated SOC stocks below 3 m depth are 181 ± 54 Pg, of which 74 ± 20 Pg is stored in intact Yedoma (late Pleistocene ice- and organic-rich silty sediments) with the remainder in refrozen thermokarst deposits. Total estimated SOC storage for the permafrost region is ∼1300 Pg with an uncertainty range of ∼1100 to 1500 Pg. Of this, ∼500 Pg is in non-permafrost soils, seasonally thawed in the active layer or in deeper taliks, while ∼800 Pg is perennially frozen. This represents a substantial ∼300 Pg lowering of the estimated perennially frozen SOC stock compared to previous estimates.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global and Planetary Change 142 (2016): 28-40, doi:10.1016/j.gloplacha.2016.04.011.
    Description: In the circumpolar north (45-90°N), permafrost plays an important role in vegetation and carbon (C) dynamics. Permafrost thawing has been accelerated by the warming climate and exerts a positive feedback to climate through increasing soil C release to the atmosphere. To evaluate the influence of permafrost on C dynamics, changes in soil temperature profiles should be considered in global C models. This study incorporates a sophisticated soil thermal model (STM) into a dynamic global vegetation model (LPJ-DGVM) to improve simulations of changes in soil temperature profiles from the ground surface to 3 m depth, and its impacts on C pools and fluxes during the 20th and 21st centuries.With cooler simulated soil temperatures during the summer, LPJ-STM estimates ~0.4 Pg C yr-1 lower present-day heterotrophic respiration but ~0.5 Pg C yr-1 higher net primary production than the original LPJ model resulting in an additional 0.8 to 1.0 Pg C yr-1 being sequestered in circumpolar ecosystems. Under a suite of projected warming scenarios, we show that the increasing active layer thickness results in the mobilization of permafrost C, which contributes to a more rapid increase in heterotrophic respiration in LPJ-STM compared to the stand-alone LPJ model. Except under the extreme warming conditions, increases in plant production due to warming and rising CO2, overwhelm the enhanced ecosystem respiration so that both boreal forest and arctic tundra ecosystems remain a net C sink over the 21st century. This study highlights the importance of considering changes in the soil thermal regime when quantifying the C budget in the circumpolar north.
    Description: This research is supported by funded projects to Q. Z. National Science Foundation (NSF- 1028291 and NSF- 0919331), the NSF Carbon and Water in the Earth Program (NSF-0630319), the NASA Land Use and Land Cover Change program (NASA- NNX09AI26G), and Department of Energy (DE-FG02-08ER64599).
    Description: 2017-05-03
    Keywords: Soil thermal regime ; Permafrost degradation ; Active layer ; Climate warming ; Carbon budget
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...