ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 2 (1984), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Late Archaean orthogneisses and aluminous and iron-rich metasedimentary rocks intruded by anorthosite and a ferrodiorite-granite suite were completely recrystallized during Proterozoic granulite facies metamorphism. Geobarometry and geothermometry indicate P-T conditions of around 7.5kbar. 700°C, with a CO2-rich fluid phase and logfO2 at or below -16. A two-stage high-grade history of near isochemical corona growth is preserved in metasediments with the reaction cycle opx + plag + H2O → hbl+gar+SiO2→ opx+plag+H2O. End product compositions resemble those of the initial phases, and the only mobile components were SiO2 and/or H2O. The coronas reflect shortlived fluctuations in chemical activity at essentially constant P and T, contrary to simple progressive change in equilibrium parameters recorded by most corona-bearing textures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 400 (1999), S. 127-127 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Mojzsis et al., reported the carbon-isotope composition of carbonaceous inclusions in grains of apatite from sediment sequences of Akilia island, southwest Greenland, that are more than 3,850 million years (Myr) old. The δ13C values measured by Mojzsis et al. led them to ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 94 (1986), S. 137-148 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Amphibolite facies early Archaean Amîtsoq gneisses envelop and intrude the c. 3,800 Ma Isua supracrustal belt, Isukasia area, southern West Greenland. Most of these gneisses are strongly deformed, but in a c. 75 km2 augen of lower deformation, the Amîtsoq gneisses are seen to comprise predominantly 3,750–3,700 Ma tonalitic grey gneisses that were intruded first by thin bodies of mafic to dioritic composition, known collectively as the Inaluk dykes, and then by c. 3,600 Ma white gneisses and finally by sporadic c. 3,400 Ma pegmatitic gneiss sheets. The grey gneisses could have formed by partial melting of crust consisting predominantly of basic rocks. The Inaluk dykes are interpreted as strongly fractionated basic melts of mantle origin, contaminated by crustal material. The white gneisses consist mostly of medium grained granite and occur as lenses and anastomosing sheets throughout their host of grey gneisses with subordinate inclusions of supracrustal rocks. The white gneisses have chemistry compatible with formation by partial melting at depth of a source dominated by grey gneisses. The igneous chemistry, including REE abundances, of the grey gneisses and white gneisses has been modified to varying degrees by metasomatism and assimilation reactions during the crystallisation of the white gneisses and also during subsequent tectonometamorphic events. The white gneisses are evidence for considerable reworking by anatexis of sialic crust in the early Archaean, 150 to 100 Ma after its formation. The white gneisses and the pegmatitic gneisses show that granitic rocks s.s. were important in the earliest Archaean, and are further evidence of the diversity of the oldest-known sial.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 130 (1998), S. 103-120 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract High-pressure metamorphic assemblages occur in mafic, ultramafic and a few intermediate rocks in a gneiss complex that covers an area of approximately 400 × 100 km in the North-East Greenland Caledonides. Detailed petrologic and geochronologic studies were carried out on three samples in order to clarify the P-T-t evolution of this eclogite province. Geothermobarometry yields temperature estimates of 700–800 °C and pressure estimates of at least 1.5 GPa from an eclogite sensu stricto and as high as 2.35 GPa for a garnet websterite. The eclogite defines a garnet-clinopyroxene-amphibole-whole rock Sm-Nd isochron age of 405 ± 24 Ma (MSWD 0.9). Isofacial garnet websterites define garnet-clinopyroxene-orthopyroxene-amphibole-whole rock-(biotite) ages of 439 ± 8 Ma (MSWD =2.1) for a coarse-grained sample and 370 ± 12 Ma (MSWD=0.6) for a finer-grained variety. Overgrowths on zircons from the fine-grained pyroxenite and the eclogite give a pooled 206Pb/238U SHRIMP age of 377 ± 7 Ma (n=4). Significantly younger Rb-Sr biotite ages of 357 ± 8, 330 ± 6 and 326 ± 6 agree with young Rb-Sr, K-Ar and 40Ar/39Ar mineral ages from the gneiss complex and indicate slow cooling of the eclogitic rocks. High-pressure metamorphism may have been at least 439 Ma old (Siluro-Ordovician) with cooling through amphibolite-facies conditions in the Devonian and continued crustal thinning and exhumation well into the Carboniferous. Sm-Nd whole rock model ages indicate the eclogite protoliths are Early Proterozoic in age, while 207Pb/206Pb SHRIMP ages of 1889 ± 18 and 1981 ± 8 from anhedral zircon cores probably reflect Proterozoic metasomatism. The samples have negative ɛNd values (−5 to −16) and elevated 87Sr/86Sr ratios (0.708–0.715), consistent with field evidence that the eclogite protoliths were an integral part of the continental crust long before Caledonian metamorphism. The presence of a large Caledonian eclogite terrane in Greenland requires modification of current tectonic models that postulate subduction of Baltica beneath Laurentia during the Caledonian orogeny.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract In the Itsaq Gneiss Complex south of the Isua supracrustal belt (West Greenland) some areas of early Archaean tonalite and quartz-diorite are non-gneissic, free of pegmatite veins, and in rarer cases are undeformed with relict igneous textures and hence were little modified by heterogeneous ductile deformation under amphibolite facies conditions in several Archaean events. Such well-preserved early Archaean rocks are extremely rare. Tonalites are high Al, and have bulk compositions close to experimental liquids. Trace element abundances and modelling suggest that they probably originated as melts derived from basaltic compositions at sufficiently high pressures to require residual garnet + amphibolites ± clinopyroxene in the source. The major element characteristics of the quartz-diorites suggest these were derived from more mafic magmas than the tonalites, and underwent either igneous differentiation or mixing with crustal material. As in modern arc magmas, high relative abundances of Sr, Ba, Pb, and alkali elements cannot be generated simply from a basaltic source formed by large degrees of melting of a depleted mantle. This may indicate an important role for fluids interacting with mafic rocks in generating the earliest preserved continental crust. The high Ba/Th, Ba/Nb, La/Nb and low Nb/Th, Ce/Pb, and Rb/Cs ratios of these tonalites are also observed in modern arc magmas. SHRIMP U-Pb zircon geochronology was undertaken on seven tonalites, one quartz-diorite, a thin pegmatitic vein and a thin diorite dyke. Cathodoluminescence images show the zircon populations of the quartz-diorite and tonalites are dominated by single-component oscillatory-zoned prismatic grains, which gave ages of 3806 ± 5 to 3818 ± 8 Ma (2σ) (quartz-diorite and 5 tonalites) and 3795 ± 3 Ma (1 tonalite). Dating of recrystallised domains cutting oscillatory-zoned zircon indicates disturbance as early as 3800–3780 Ma. There are rare ca. 3600 Ma and 3800–3780 Ma (very high U and low Th/U) ≤ 20 μm wide partial overgrowths on the prismatic grains. Given likely Zr-undersaturation of precursor melts and evidence of zircon recrystallisation and metamorphic regrowth as early as 3800–3780 Ma, the age determinations on the prismatic oscillatory-zoned zircon populations give the igneous crystallisation age of the tonalite and quartz-diorite protoliths. When the coherency of the geochemistry is considered, these samples represent the best preserved suites of ca. 3800 Ma felsic igneous rocks yet documented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A distinctive group of augen gneisses and ferrodiorites (termed the iron-rich suite) is a component of the early Archaean Amîtsoq gneisses of southern West Greenland. The iron-rich suite outcrops south of the mouth of Ameralik fjord in an area that underwent granulite facies metamorphism in the early Archaean. The iron-rich suite forms approximately 30% of the Amîtsoq gneiss of this area and occurs as sheets and lenses up to 500 m thick. The rest of the Amîtsoq gneisses are predominantly tonalitic-granodioritic, banded grey gneisses. Despite intense deformation and polymetamorphism, there is local field evidence that the iron-rich suite was intruded into the grey gneisses after they had been affected by tectonism and metamorphism. The banded grey gneisses are interpreted as 3,700 to 3,800 Ma old; U-Pb zircon ages from the iron-rich suite give concordia intercepts at circa 3,600 Ma. Coarse grained augen gneisses with microcline mega-crysts are the dominant lithology of the iron-rich suite. They are mostly granodioritic, grading locally into granite and diorite, and are generally rather massive, but locally have well-preserved layering or are markedly heterogeneous. Mafic components are commonly concentrated into “clots” rich in hornblende and biotite and containing apatite, ilmenite, sphene and zircon. Variation in the proportion of these clots is the main reason for the compositional variation of the augen gneisses. The ferrodiorites of the suite occur as lenses in the augen gneisses. Leucocratic granitoid sheets locally cut the iron-rich suite. The augen gneisses and ferrodiorites have geochemical characteristics in common, such as high Fe/Mg values and high contents of FeOt, TiO2, P2O5, Zr, Y and total REE (rare earth elements). The iron-rich suite probably formed as follows: Heating of the lower crust adjacent to mantle-derived basic intrusions caused melting of the lower crust, giving rise to granodioritic magmas. Disruption of partially crystallised basic intrusions caused mixing of the crustal melts and the fractionated mantle melts to produce the augen gneisses with their high FeOt, TiO2, P2O5, Zr, Y and total REE enrichment. Fragmented, crystallised parts of the basic intrusions gave rise to the ferrodiorite inclusions. These heterogeneous plutons rose to higher crustal levels where they crystallised as sheets and possibly were responsible for the local granulite facies metamorphism. The granitoid sheets that cut the iron-rich suite are interpreted as crustal melts of local origin. The iron-rich suite resembles Proterozoic rapakivi granite-ferrodiorite-norite (anorthosite) associations which form characteristic suites in late- to post-tectonic environments in recently thickened sial. The occurrence of this type of magmatism in the early Archaean is evidence of the complex, polygenetic nature of the oldest known continental crust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-06-26
    Description: Eoarchaean crust in West Greenland (the Itsaq Gneiss Complex, 3870-3600 Ma) is 〉80% by volume orthogneisses derived from plutonic tonalite-trondhjemite-granodiorite (TTG) suites, 〈10% amphibolites derived from basalts and gabbros, 〈10% crustally derived granite, 〈1% metasedimentary rocks and 〈〈1% tectonic slices of upper mantle peridotite. Amphibolites at 〉3850, c. 3810 and c. 3710 Ma have some compositional similarities to modern island arc basalts (IAB), suggesting their origin by hydrous fluxing of a suprasubduction-zone upper mantle wedge. Most of the Eoarchaean tonalites match in composition high-silica, low-magnesian adakites, whose petrogenesis is dominated by partial melting of garnetiferous mafic rocks at high pressure. However, associated with the tonalites are volumetrically minor more magnesian quartz diorites, whose genesis probably involved melting of depleted mantle to which some slab-derived component had been added. This assemblage is evocative of suites of magmas produced at Phanerozoic convergent plate boundaries in the case where subducted crust is young and hot. Thus, Eoarchaean subduction' first gave rise to short-lived episodes of mantle wedge melting by hydrous fluxing, yielding IAB-like basalts{+/-}boninites. In the hotter Eoarchaean Earth, flux-dominated destructive plate boundary magma generation quickly switched to slab melting of ( subducted') oceanic crust. This latter process produced the voluminous tonalites that were intruded into the slightly older sequences consisting of tectonically imbricated assemblages of IAB-like pillow lavas+sedimentary rocks, gabbros and upper mantle peridotite slivers. Zircon dating shows that Eoarchaean TTG production in the Itsaq Gneiss Complex was episodic (3870, 3850-3840, 3820-3810, 3795, 3760-3740, 3710-3695 and 3660 Ma). In each case, emplacement of small volumes of magma was probably followed by 10-40 Ma quiescence, which allowed the associated thermal pulse to dissipate. This explains why Greenland Eoarchaean crustal growth did not have granulite-facies metamorphism directly associated with it. Instead, 3660-3600 Ma granulite-facies metamorphism(s) in the Itsaq Gneiss Complex were consequential to collisional orogeny and underplating, upon termination of crustal growth. Similar Eoarchaean crustal history is recorded in the Anshan area of China, where a few well-preserved rocks as old as 3800 Ma have been found including high-MgO quartz diorites. For 3800 Ma rocks, this is a rare, if not unique, situation outside of the Itsaq Gneiss Complex. The presence of volumetrically minor 3800 Ma mantle-derived high-MgO quartz diorites in both the Itsaq Gneiss Complex and the Anshan area indicates either that Eoarchaean subduction' zones were overlain by a narrow mantle wedge or that the shallow subduction trapped slivers of upper mantle between the conserved and consumed plates.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-07-01
    Print ISSN: 0022-1376
    Electronic ISSN: 1537-5269
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1999-05-01
    Print ISSN: 0022-1376
    Electronic ISSN: 1537-5269
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-10-01
    Print ISSN: 0301-9268
    Electronic ISSN: 1872-7433
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...