ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Many processes active on the early Moon are common to most terrestrial planets, including the record of early and late impact bombardment. The Moon's surface provides a record of the earliest era of terrestrial planet evolution, and the type and composition of minerals that comprise a planetary surface are a direct result of the initial composition and subsequent thermal and physical processing. Lunar mineralogy seen today is thus a direct record of the early evolution of the lunar crust and subsequent geologic processes. Specifically, the distribution and concentration of specific minerals is closely tied to magma ocean products, lenses of intruded or remelted plutons, basaltic volcanism and fire-fountaining, and any process (e.g. cratering) that might redistribute or transform primary and secondary lunar crustal materials. The association of several lunar minerals with key geologic processes is illustrated in Figure 1. The geologic history of potential landing sites on the Moon can be read from the character and context of local mineralogy.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ICEUM8: International Conference on Exploration and Utilizationo of the Moon; Jul 23, 2006 - Jul 27, 2006; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-01
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Geosciences , Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-05-01
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The composition and spectral properties of the Mars Pathfinder rocks and soils together with the identification of basaltic and andesitic Mars terrains based on Thermal Emission Spectrometer (TES) data raised interesting questions regarding the nature and origin of Mars surface rocks. We have investigated the following questions: (1) are the Pathfinder rocks igneous and is it possible these rocks could have formed by known igneous processes, such as equilibrium or fractional crystallization, operating within SNC magmas known to exist on Mars? If it is possible, what P (depth) and PH2O conditions are required? (2) whether TES-based interpretations of plagioclase-rich basalt and andesitic terrains in the south and north regions of Mars respectively are unique. Are the surface compositions of these regions plagioclase-rich, possibly indicating the presence of old AI-rich crust of Mars, or are the spectra being affected by something like surface weathering processes that might determine the spectral pyroxene to plagioclase ratio?
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Biogeosciences, 124(6), (2019): 1591-1603, doi:10.1029/2018JG004803.
    Description: Tropical dry forests in eastern and southern Africa cover 2.5 × 106 km2, support wildlife habitat and livelihoods of more than 150 million people, and face threats from land use and climate change. To inform conservation, we need better understanding of ecosystem processes like nutrient cycling that regulate forest productivity and biomass accumulation. Here we report on patterns in nitrogen (N) cycling across a 100‐year forest regrowth chronosequence in the Tanzanian Miombo woodlands. Soil and vegetation indicators showed that low ecosystem N availability for trees persisted across young to mature forests. Ammonium dominated soil mineral N pools from 0‐ to 15‐cm depth. Laboratory‐measured soil N mineralization rates across 3‐ to 40‐year regrowth sites showed no significant trends and were lower than mature forest rates. Aboveground tree N pools increased at 6 to 7 kg N·ha−1·yr−1, accounting for the majority of ecosystem N accumulation. Foliar δ15N 〈0‰ in an N‐fixing canopy tree across all sites suggested that N fixation may contribute to ecosystem N cycle recovery. These results contrast N cycling in wetter tropical and Neotropical dry forests, where indicators of N scarcity diminish after several decades of regrowth. Our findings suggest that minimizing woody biomass removal, litter layer, and topsoil disturbance may be important to promote N cycle recovery and natural regeneration in Miombo woodlands. Higher rates of N mineralization in the wet season indicated a potential that climate change‐altered rainfall leading to extended dry periods may lower N availability through soil moisture‐dependent N mineralization pathways, particularly for mature forests.
    Description: This study depended on the knowledge, insights, and cooperation of many people and institutions. We thank the Millennium Villages Project‐Mbola site for providing introductions to the landscape and village headmen in many regions. We thank the ARI‐Tumbi staff (now TARI‐Tumbi) in Tabora, Tanzania for providing invaluable logistical support in identifying forest regrowth sites and help with labwork in Tabora, Tanzania. We thank other key local organizations, including Tabora Development Foundation Trust (Dick Mlimuka, Oscar Kisanji) and Tanzania Forest Service (Bw. Relingo), for logistical support and transportation. We thank many village headmen and farmers for access to forest sites within their lands for sampling. Finally, we would like to thank the MBL Stable Isotope laboratory and Dr. Marshall Otter for his expertise with producing and interpreting soil and leaf C, N and stable isotope data. This study was funded in part by NSF PIRE Grant OISE 0968211, a Dissertation Support Grant to Marc Mayes from Brown University (2015–2016), and completed with permission and cooperation from the Tanzania Commission on Science and Technology (COSTECH permits 2013‐261‐NA‐2014‐199 and 2015‐183‐ER‐2014‐199). Data and code for analyses can be accessed at a Github repository: https://github.com/mtm17/MiomboN.git.
    Description: 2019-11-08
    Keywords: Nitrogen ; Africa ; Miombo ; Tropical dry forest ; Carbon ; Secondary forest regrowth
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...