ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 88 (1984), S. 1981-1987 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 94 (1972), S. 5588-5592 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of chemical information and modeling 21 (1981), S. 86-90 
    ISSN: 1520-5142
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 99 (1995), S. 1900-1908 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 103 (1995), S. 7414-7421 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A family of modified GAUSSIAN−2 (G2M) calculational schemes have been proposed, based on geometry optimization and vibrational frequency calculations using the hybrid density-functional approach, and electron correlation evaluation using the coupled-cluster methods. The most accurate model, called G2M(RCC), gives the average absolute deviation of calculated atomization energies from experiment for 32 first-row compounds of 0.88 kcal/mol. The other two methods, called G2M(RCC,MP2) and G2M(rcc,MP2), exhibit the average absolute deviations of 1.15 and 1.28 kcal/mol, respectively, and can be used for the calculations of molecules and radicals of larger sizes containing up to six to seven heavy atoms. The G2M(rcc,MP2) model demonstrates an accuracy comparable to that of G2(MP2) and requires less intensive computations than the latter. The preference of the G2M(RCC) methods over the original G2 is expected to be particularly significant for the open shell systems with large spin contamination. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 103 (1995), S. 5640-5649 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Potential energy surface of the reaction of NH2 with NO2 has been studied at the QCISD(T)/6-311G(d,p)//MP2/6-311G(d,p)+ZPC[MP2/6-311G(d,p)] and GAUSSIAN−2 (G2) levels of calculation. The reaction is shown to give three different groups of products. H2NO+NO can be produced by two different channels: (i) the barrierless association of the reactants to form H2NNO2 1, followed by the nitro–nitrite rearrangement into H2NONO 3 and the ON bond scission and (ii) the association of H2N with ONO directly forming 3 without barrier, followed by the dissociation 3. The barrier for the nitro–nitrite rearrangement at the transition state (TS) 2, 31.2 kcal/mol with respect to 1, is 20.8 kcal/mol lower than the reactants at the best G2 level. The TS 2 is found to lie significantly lower and to have much tighter structure than those previously reported. The thermodynamically most stable N2O+H2O products can be formed from 1 by the complex mechanism (iii), involving 1,3-hydrogen shift from nitrogen to oxygen, rotation of the OH bond, H shift from one oxygen to another and migration of the second H atom from N to O leading to elimination of H2O. The rate-determining step is the 1,3-H shift at TS 4 which is 12.5 kcal/mol lower than NH2+NO2, but 8.3 kcal/mol higher than the barrier for the nitro–nitrite isomerization at TS 2 at the G2 level. N2+H2O2 cannot be formed in the reaction, but several channels are shown to produce N2+2OH. All of them have as the rate-determining step the second 1,3-hydrogen shift from nitrogen to oxygen at TS 11 or 16, lying by 6.9 kcal/mol higher than NH2+NO2, and are not expected to compete with the reaction mechanisms producing H2NO+NO and N2O+H2O. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 101 (1994), S. 3916-3922 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The reaction of NH with NO2, which can produce N2O+OH and HNO+NO by two distinct reaction paths, has been studied by ab initio molecular orbital calculations. The first reaction path taking place by initial N–N association forms an intermediate HNNO2, 1, which undergoes H-migration yielding NN(O)OH, 3, before reaching the N2O+OH product. The transition state 2 for the rate-determining 1→3 rearrangement, with the activation barrier of 30 kcal/mol at the G2-level of calculation, lies below the energy of the reactants. The O migration for the HNNO2 1 intermediate to produce HNO+NO is inaccessible at low temperatures due to the presence of a high migration barrier. The second path via initial N–O association forms an intermediate HNONO, 9, which is expected to dissociate readily to HNO+NO via a loose transition state lying 24 kcal/mol below the reactants. Since the initial N–N and N–O association reactions effectively occur with no barriers, the overall activation energy for NH+NO2 is expected to be negligible or slightly negative as was found experimentally.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 99 (1995), S. 6842-6848 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 3187-3205 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The global potential energy surfaces of the [H,C,N,O]+ system both in doublet and quartet states have been rather exhaustively studied with the B3LYP density functional method, with special attention to cover nearly all intermediate and transition states. Ionization potentials, energies of reactions, and proton affinities of fragments are calculated and compared with experiments to assess the reliability. In the doublet state, all six chain isomers and three cyclic structures exist, and rearrangements among them take place over high barriers mainly via the 1,3-H shift and chain–cycle transformation. Pathways for fragmentations of the isocyanic acid cation HNCO+ and fulminic acid cation HCNO+ have been identified and compared with the experiments. In the quartet state, there exist ion–molecule complexes between fragments as well as trans and cis forms of chain isomers and cyclic and open branched isomers, and the potential surfaces for interconversion and fragmentation are much more complicated. The potential energy profiles for the reaction of O+(4S)+HCN have been examined and pathways for production of experimentally observed HCN+, NO+, HCO+, and HOC+ have been identified to go through long-lived chain intermediates HCNO+ and HOCN+ and open branched intermediate NCHO+, while production of CO+ is more complicated. The crossing seam minimum with the doublet has been found right at the quartet intermediate HCNO+, and intersystem crossing and production of the stable doublet fulminic acid cation HCNO+ is likely to be an efficient process. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 6439-6454 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Global potential energy surfaces (PESs) of the [H,C,N,O] system in singlet and triplet states have been investigated using the hybrid density functional B3LYP/6−311G(d,p) method. Isocyanic acid, HNCO 1, has been found to be the most stable isomer for both multiplicities. The adiabatic singlet–triplet splitting for 1 is 82.6 kcal/mol. In the singlet state, HNCO is energetically followed by cyanic acid, HOCN 2, 28.7 kcal/mol higher than 1, fulminic acid, HCNO 3 (67.9 kcal/mol), and isofulminic acid, HONC 4 (87.1 kcal/mol). In the triplet state, the branched NC(H)O isomer 37 is 0.3 kcal/mol higher than 31, followed by HOCN 32 (27.9 kcal/mol relative to triplet HNCO) and HCNO 33 (40.6 kcal/mol). The barriers for intramolecular rearrangements within singlet and triplet [H,C,N,O] system have been calculated to be high, and the isomerization processes in most cases are not expected to compete with fragmentations. Several minima on the singlet–triplet seam of crossing, relevant to the singlet [H,C,N,O] decomposition reactions, have also been found. The global features of the singlet and triplet PES have been applied to several important reactions, such as NH(3Σ−)+CO, thermal decomposition of HNCO, O(3P)+HCN, O(3P)+HNC, and CH(2Π)+NO(2Π). For these reactions, major product channels have been speculated and their activation energies have been reported. Adiabatic ionization potentials for singlet and triplet [H,C,N,O] have been found to be high, in the range of 180–270 kcal/mol. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...