ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-20
    Description: Sea ice models have become essential components of weather, climate, and ocean models. A realistic representation of sea ice affects the reliability of process representation, environmental forecast, and climate projections. Realistic simulations of sea ice kinematics require the consideration of both large-scale and finescale geomorphological structures such as linear kinematic features (LKF). We propose a multiscale directional analysis (MDA) that diagnoses the spatial characteristics of LKFs. The MDA is different from previous analyses in that it (i) does not detect LKFs as objects, (ii) takes into account the width of LKFs, and (iii) estimates scale-dependent orientation and intersection angles. The MDA is applied to pairs of deformation fields derived from satellite remote sensing data and from a numerical model simulation with a horizontal grid spacing of ~4.5 km. The orientation and intersection angles of LKFs agree with the observations and confirm the visual impression that the intersection angles tend to be smaller in the satellite data compared to the model data. The MDA distributions can be used to compare satellite data and numerical model fields using conventional metrics such as a Euclidean distance, the Bhattacharyya coefficient, or the Earth mover’s distance. The latter is found to be the most meaningful metric to compare distributions of LKF orientations and intersection angles. The MDA proposed here provides a tool to diagnose if modified sea ice rheologies lead to more realistic simulations of LKFs.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-01
    Print ISSN: 1463-5003
    Electronic ISSN: 1463-5011
    Topics: Geography , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-01
    Print ISSN: 1463-5003
    Electronic ISSN: 1463-5011
    Topics: Geography , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  EPIC3Polar Prediction Workshop, Bremerhaven, 2017-03-27-2017-03-30
    Publication Date: 2017-04-03
    Description: Sea ice deformation localizes along Linear Kinematic Features (LKFs) that are relevant for the air/ocean/sea-ice interaction and for shipping andmarine operations. At high resolution (〈 5km) viscous-plastic sea ice models start to resolve LKFs. Here, we study the short-range (up to 10 days) potential predictability of LKFs in Arctic sea ice using ensemble simulations of an ocean/sea-ice model with a grid point separation of 4.5 km. We analyze the sensitivity of predictability to idealized initial perturbations, mimicking the uncertainties in sea ice analyses, and to growing uncertainty of the atmospheric forcing caused by the chaotic nature of the atmosphere. The similarity between pairs of ensemble members is quantified by Pearson correlation and Modified Hausdorff Distance (MHD). In our perfect model experiments, the potential predictability of LKFs, based on the MHD, drops below 0.6 after 4 days in winter. We find that forcing uncertainty (due to limited atmospheric predictability) largely determines LKF predictability on the 10-day time scale, while uncertainties in the initial state impact the potential predictability only within the first 4 days.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-05-11
    Description: Sea ice models have become essential components of weather, climate and ocean models. The reliability of process studies, environmental forecasts and climate projections alike depend on a realistic representation of sea ice. Developing and evaluating sea ice models requires methods for both large scales and fine-scale geomorphological structures such as linear kinematic features (LKF). We introduce a Multiscale Directional Analysis (MDA) method that diagnoses distributions of LKF orientation and intersection angles. The MDA method is different from previous methods in that it (a) takes into account the width of LKFs instead of estimating the orientation of centerlines; (b) separates curve-like features from point-like features providing the opportunity to reach a unified definition of LKF in both numerical and observational fields; (c) estimates scale-dependent intersection angles.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Monthly Weather Review, AMER METEOROLOGICAL SOC, 148(8), pp. 3287-3303, ISSN: 0027-0644
    Publication Date: 2020-07-28
    Description: Sea ice models have become essential components of weather, climate, and ocean models. A realistic representation of sea ice affects the reliability of process representation, environmental forecast, and climate projections. Realistic simulations of sea ice kinematics require the consideration of both large-scale and finescale geomorphological structures such as linear kinematic features (LKF). We propose a multiscale directional analysis (MDA) that diagnoses the spatial characteristics of LKFs. The MDA is different from previous analyses in that it (i) does not detect LKFs as objects, (ii) takes into account the width of LKFs, and (iii) estimates scale-dependent orientation and intersection angles. The MDA is applied to pairs of deformation fields derived from satellite remote sensing data and from a numerical model simulation with a horizontal grid spacing of ~4.5 km. The orientation and intersection angles of LKFs agree with the observations and confirm the visual impression that the intersection angles tend to be smaller in the satellite data compared to the model data. The MDA distributions can be used to compare satellite data and numerical model fields using conventional metrics such as a Euclidean distance, the Bhattacharyya coefficient, or the Earth mover’s distance. The latter is found to be the most meaningful metric to compare distributions of LKF orientations and intersection angles. The MDA proposed here provides a tool to diagnose if modified sea ice rheologies lead to more realistic simulations of LKFs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    ELSEVIER SCI LTD
    In:  EPIC3Ocean Modelling, ELSEVIER SCI LTD, 94, pp. 112-127, ISSN: 1463-5003
    Publication Date: 2017-01-27
    Description: This paper quantifies spurious dissipation and mixing of various advection schemes in idealised experiments of lateral shear and baroclinic instabilities in numerical simulations of a re-entrant Eady channel for configurations with large and small Rossby numbers. In addition, a two-dimensional barotropic shear instability test case is used to examine numerical dissipation of momentum advection in isolation, without any baroclinic effects. Effects of advection schemes on the evolution of background potential energy and the dynamics of the restratification process are analysed. The advection schemes for momentum and tracers are considered using several different methods including a recently developed local dissipation analysis. As highly accurate but computationally demanding schemes we apply WENO and MP5, and as more efficient lower-order total variation diminishing (TVD) schemes we use among others the SPL-max-View the MathML source13 and a third-order-upwind scheme. The analysis shows that the MP5 and SPL-max-View the MathML source13 schemes provide the most accurate results. Following our comprehensive analysis of computational costs, the MP5 scheme is approximately 2.3 times more expensive in our implementation. In contrast to the configuration with a small Rossby number, in which significant differences between schemes are apparent, the different advection schemes behave similarly for a larger Rossby number. Regions of high numerical dissipation are shown to be associated with low grid Reynolds numbers. The major outcome of the present study is that generally positive global numerical dissipation and positive background potential energy evolution delay the restratification process.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3European Geosciences Union General Assembly, Vienna, 2016-04-17-2016-04-22
    Publication Date: 2017-02-14
    Description: The discretisation of the advection terms in transport equations introduces truncation errors in numerical models. These errors are usually associated with spurious diffusion, i.e. numerically-induced mixing of the advected quantities or dissipation of kinetic energy associated with the advection of momentum. Especially the numerically-induced diapycnal mixing part is very problematic for realistic model simulations. Since any diapycnal mixing of temperature and salinity increases the reference potential energy (RPE), numerically-induced mixing is often quantified in terms of RPE. However, this global bulk measure does not provide any information about the local amount of numerically-induced mixing of a single advected quantity. In this talk we will present a recently developed analysis method that quantifies the numerically-induced mixing of a single advected quantity locally (Klingbeil et al., 2014***). The method is based on the local tracer variance decay in terms of variance fluxes associated with the corresponding advective tracer fluxes. Because of its physically sound definition, this analysis method provides a reliable diagnostic tool, e.g., to assess the performance of advection schemes and to identify hotspots of numerically-induced mixing. At these identified positions the model could be adapted in terms of resolution or the applied numerical schemes. In this context we will demonstrate how numerically-induced mixing of temperature and salinity can be substantially reduced by vertical meshes adapting towards stratification. *** Klingbeil, K., M. Mohammadi-Aragh, U. Gräwe, H. Burchard (2014) . Quantification of spurious dissipation and mixing – Discrete Variance Decay in a Finite-Volume framework. Ocean Modelling. doi:10.1016/j.ocemod.2014.06.001.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  EPIC3ILWAO: "International Leibniz Graduate School for Waves and Turbulence in the Atmospher and Ocean", University of Rostock, 2016-01-08-2016-01-08
    Publication Date: 2017-02-14
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-01-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...