ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Publication Date: 2024-03-15
    Description: Biomineralization is one of the key processes that is notably affected in marine calcifiers such as oysters under ocean acidification (OA). Understanding molecular changes in the biomineralization process under OA and its heritability, therefore, is key to developing conservation strategies for protecting ecologically and economically important oyster species. To do this, in this study, we have explicitly chosen the tissue involved in biomineralization (mantle) of an estuarine commercial oyster species, Crassostrea hongkongensis. The primary aim of this study is to understand the influence of DNA methylation over gene expression of mantle tissue under decreased pH 7.4, a proxy of OA, and to extrapolate if these molecular changes can be observed in the product of biomineralization—the shell. We grew early juvenile C. hongkongensis, under decreased pH 7.4 and control pH 8.0 over 4.5 months and studied OA-induced DNA methylation and gene expression patterns along with shell properties such as microstructure, crystal orientation and hardness. The population of oysters used in this study was found to be moderately resilient to OA at the end of the experiment. The expression of key biomineralization-related genes such as carbonic anhydrase and alkaline phosphatase remained unaffected; thus, the mechanical properties of the shell (shell growth rate, hardness and crystal orientation) were also maintained without any significant difference between control and OA conditions with signs of severe dissolution. In addition, this study makes three major conclusions: (1) higher expression of Ca2+ binding/signalling-related genes in the mantle plays a key role in maintaining biomineralization under OA; (2) DNA methylation changes occur in response to OA; however, these methylation changes do not directly control gene expression; and (3) OA would be more of a 'dissolution problem' rather than a 'biomineralization problem' for resilient species that maintain calcification rate with normal shell growth and mechanical properties.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Crassostrea hongkongensis; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Mollusca; Month; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Salinity; Salinity, standard deviation; Single species; Species; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type; Uniform resource locator/link to reference; Vickers Hardness; Vickers Hardness, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 270 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Meng, Yuan; Guo, Zhenbin; Fitzer, Susan C; Upadhyay, Abhishek; Chan, Vera B S; Li, Chaoyi; Cusack, Maggie; Yao, Haimin; Yeung, Kelvin W K; Thiyagarajan, Vengatesen (2018): Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: a hierarchical analysis. Biogeosciences, 15(22), 6833-6846, https://doi.org/10.5194/bg-15-6833-2018
    Publication Date: 2024-03-15
    Description: The rapidly intensifying process of ocean acidification (OA) due to anthropogenic CO2 is not only depleting carbonate ions necessary for calcification but also causing acidosis and disrupting internal pH homeostasis in several marine organisms. These negative consequences of OA on marine calcifiers, i.e. oyster species, have been very well documented in recent studies; however, the consequences of reduced or impaired calcification on the end-product, shells or skeletons, still remain one of the major research gaps. Shells produced by marine organisms under OA are expected to show signs of dissolution, disorganized microstructure and reduced mechanical properties. To bridge this knowledge gap and to test the above hypothesis, we investigated the effect of OA on juvenile shells of the commercially important oyster species, Magallana angulata, at ecologically and climatically relevant OA levels (using pH 8.1, 7.8, 7.5, 7.2). In lower pH conditions, a drop of shell hardness and stiffness was revealed by nanoindentation tests, while an evident porous internal microstructure was detected by scanning electron microscopy. Crystallographic orientation, on the other hand, showed no significant difference with decreasing pH using electron back-scattered diffraction (EBSD). These results indicate the porous internal microstructure may be the cause of the reduction in shell hardness and stiffness. The overall decrease of shell density observed from micro-computed tomography analysis indicates the porous internal microstructure may run through the shell, thus inevitably limiting the effectiveness of the shell's defensive function. This study shows the potential deterioration of oyster shells induced by OA, especially in their early life stage. This knowledge is critical to estimate the survival and production of edible oysters in the future ocean.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Area porosity; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Density; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fujian; Growth/Morphology; Hardness; Laboratory experiment; Magallana angulata; Mollusca; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Salinity; Salinity, standard deviation; Single species; Species; Stiffness; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference; Volume
    Type: Dataset
    Format: text/tab-separated-values, 10116 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Meng, Yuan; Guo, Zhenbin; Yao, Haimin; Yeung, Kelvin W K; Thiyagarajan, Vengatesen (2019): Calcium carbonate unit realignment under acidification: A potential compensatory mechanism in an edible estuarine oyster. Marine Pollution Bulletin, 139, 141-149, https://doi.org/10.1016/j.marpolbul.2018.12.030
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA) is well-known for impairing marine calcification; however, the end response of several essential species to this perturbation remains unknown. Decreased pH and saturation levels (Omega) of minerals under OA is projected to alter shell crystallography and thus to reduce shell mechanical properties. This study examined this hypothesis using a commercially important estuarine oyster Magallana hongkongensis. Although shell damage occurred on the outmost prismatic layer and the undying myostracum at decreased pH 7.6 and 7.3, the major foliated layer was relatively unharmed. Oysters maintained their shell hardness and stiffness through altered crystal unit orientation under pH 7.6 conditions. However, under the undersaturated conditions (Omega Cal ~ 0.8) at pH 7.3, the realigned crystal units in foliated layer ultimately resulted in less stiff shells which indicated although estuarine oysters are mechanically resistant to unfavorable calcification conditions, extremely low pH condition is still a threat to this essential species.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Area porosity; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Brackish waters; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Density; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Hardness; Laboratory experiment; Magallana hongkongensis; Mollusca; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Salinity; Salinity, standard deviation; Single species; Species; Stiffness; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type; Uniform resource locator/link to reference; Volume; Zhanjiang
    Type: Dataset
    Format: text/tab-separated-values, 918 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-09-12
    Description: Ocean acidification (OA) is the decline in seawater pH and saturation levels of calcium carbonate (CaCO3) minerals that has led to concerns for calcifying organisms such as corals, oysters and mussels because of the adverse effects of OA on their biomineralisation, shells and skeletons. A range of cellular biology, geochemistry and materials science approaches have been used to explore biomineralisation. These techniques have revealed that responses to seawater acidification can be highly variable among species, yet the underlying mechanisms remain largely unresolved. To assess the impacts of global OA, researchers will need to apply a range of tools developed across disciplines, many of which are emerging and have not yet been used in this context. This review outlines techniques that could be applied to study OA-induced alterations in the mechanisms of biomineralisation and their ultimate effects on shells and skeletons. We illustrate how to characterise, quantify and monitor the process of biomineralisation in the context of global climate change and OA. We highlight the basic principles, as well as the advantages and disadvantages, of established, emerging and future techniques for OA researchers. A combination of these techniques will enable a holistic approach and better understanding of the potential impact of OA on biomineralisation and its consequences for marine calcifiers and associated ecosystems.
    Keywords: Structures ; techniques ; ocean acidification ; bic Book Industry Communication::R Earth sciences, geography, environment, planning
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 218 (1989), S. 118-126 
    ISSN: 1617-4623
    Keywords: Drosophila ; Regulation ; yellow gene ; Germline transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have assessed the DNA sequence requirements for the correct spatial pattern and phenotypic expression of y in the late embryo/larvae. The wild-type larval phenotype requires both the regions between-294 bp and-92 bp and a portion of the intron; the sequence element(s) located within the intron can act in a position independent manner to effect the wild-type larval phenotype. The larval expression pattern was examined by tissue experiments in situ and by staining germline transformants derived from various y/lacZ fusion constructs. The larval expression of y is restricted to the mouthparts, microsetae and anal plates. While the-495 bp to+194 bp region alone cannot effect a wild-type larval expression pattern, this region in conjunction with the intron appears to be sufficient to drive β-gal expression in an essentially wild-type pattern. Our data further suggest that the-294 bp to-92 bp region contains elements which specify the larval pattern and that the element(s) in the intron normally act to enhance the level of expression necessary for the wild-type larval phenotype. We also present a phenotypic analysis of the adult cuticle structures of germline transformants derived from a variety of deletion and rearrangement constructs of the y gene. This analysis has revealed several new features associated with the regulation of y expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-25
    Description: A high-fat diet (HFD) causes obesity-associated morbidities involved in macroautophagy and chaperone-mediated autophagy (CMA). AMPK, the mediator of macroautophage, has been reported to be inactivated in HFD-caused renal injury. However, PAX2, the mediator for CMA, has not been reported in HFD-caused renal injury. Here we report that HFD-caused renal injury involved the inactivation of Pax2 and Ampk, and the activation of soluble epoxide hydrolase (sEH), in a murine model. Specifically, mice fed on an HFD for 2, 4, and 8 wk showed time-dependent renal injury, the significant decrease in renal Pax2 and Ampk at both mRNA and protein levels, and a significant increase in renal sEH at mRNA, protein, and molecular levels. Also, administration of an sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea, significantly attenuated the HFD-caused renal injury, decreased renal sEH consistently at mRNA and protein levels, modified the renal levels of sEH-mediated epoxyeicosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs) as expected, and increased renal Pax2 and Ampk at mRNA and/or protein levels. Furthermore, palmitic acid (PA) treatment caused significant increase in Mcp-1, and decrease in both Pax2 and Ampk in murine renal mesangial cells (mRMCs) time- and dose-dependently. Also, 14(15)-EET (a major substrate of sEH), but not its sEH-mediated metabolite 14,15-DHET, significantly reversed PA-induced increase in Mcp-1, and PA-induced decrease in Pax2 and Ampk. In addition, plasmid construction revealed that Pax2 may positively regulate Ampk transcriptionally in mRMCs. This study provides insights into and therapeutic target for the HFD-mediated renal injury.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-06-11
    Print ISSN: 2469-9950
    Electronic ISSN: 2469-9969
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-04-14
    Print ISSN: 0002-1962
    Electronic ISSN: 1435-0645
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2020-06-30
    Description: The rise of bicycle-sharing stimulated companies’ investment in a large number of bicycles in the market. However, it is important to balance the massive placement of bicycles in the market and the company’s sustainable development. This paper is motivated to identify a strategic balance between market expansion and the sustainable development of the company. Based on the information asymmetry and evolutionary game theory, a tripartite game model was established for the government, enterprise, and consumer. This study identified five evolutionary stability strategies (ESSs) of these three parties under specific conditions by analyzing their decision-making behavior. The results indicated that the number of bicycles in the market placed by a bicycle-sharing enterprise was not directly proportional to its profit. The quantity of bicycles needed on the market was influenced by the government and consumers. It also found that government regulation plays a dominant role in the development of the bicycle-sharing company regarding the number of bicycles needed in the market.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...