ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 95 (1991), S. 10413-10419 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 97 (1992), S. 9001-9015 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: This paper presents the first application of a new method for multidimensional real time quantum dynamics described in a previous Letter [Chem. Phys. Lett. 193, 435 (1992)]. The key feature of the method is the use of an improved zeroth order representation in the Feynman propagator, which allows large time steps in the path integral. Use of the adiabatic approximation in the case of a system coupled to a harmonic bath leads to a path integral over the system coordinate with a one-dimensional propagator which is constructed numerically and which corresponds to dynamics along the adiabatic path, and with a nonlocal influence functional that accounts for nonadiabatic effects. We have performed accurate quantum mechanical calculations on the dynamics of CH overtone relaxation in linear hydrocarbon chains by direct numerical evaluation of the path integral in the quasiadiabatic representation. Converged results for the survival probability of the υ=5 and υ=8 states of HC6 are reported up to five vibrational periods of the CH stretch and compared to those obtained from standard classical and semiclassical simulations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 89 (1988), S. 2170-2177 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Monte Carlo methods are described for evaluating the Feynman path integral representation of the (real time) propagator (time evolution operator), exp(−iHt/(h-dash-bar)). The approach is based on the modified Filinov algorithm presented earlier by Makri and Miller [Chem. Phys. Lett. 139, 10 (1987)]. Numerical calculations are presented for time evolution in a symmetric double well potential, as well as in a Morse potential.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 4026-4036 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A semiclassical model for tunneling from one classically allowed region on a potential energy surface to another is described. The principal feature of this model, compared to earlier (more "rigorous'') multidimensional semiclassical tunneling theories, is that it can be implemented in a straightforward way within the framework of a standard classical trajectory simulation. Applications to several examples of unimolecular isomerization and unimolecular dissociation show that the model is capable of providing excellent results over a wide range of conditions (i.e., coupling strengths, different symmetries of couplings, etc.)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 4949-4958 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A new approach to the calculation of quantum mechanical Boltzmann averaged reaction rate constants for polyatomic systems is described. The rate constant is obtained by integrating a set of coupled first order temperature-dependent differential equations, the number of which grows linearly with the size of the system. This is accomplished by (i) representing the complex time evolution operator in mixed position and operator form and (ii) introducing two-body correlations in the conventional time-dependent self-consistent field approximation, as suggested recently [Chem. Phys. Lett. 169, 541 (1990)]. The method is accurate and numerically stable; it is therefore expected to find considerable utility in the study of gas phase bimolecular reactions with the reaction path Hamiltonian formalism, as well as in the calculation of rate constants for reactive processes in condensed media.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 90 (1989), S. 904-911 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The coordinate matrix element of the time evolution operator, exp[−iHˆt/(h-dash-bar)], is determined by expanding (its exponent) in a power series in t. Recursion relations are obtained for the expansion coefficients which can be analytically evaluated for any number of degrees of freedom. Numerical application to the tunneling matrix element in a double well potential and to the reactive flux correlation function for a barrier potential show this approach to be a dramatic improvement over the standard short time approximation for the propagator. Its use in a Feynman path integral means that fewer "time slices'' in the matrix product exp[(−i/(h-dash-bar))ΔtHˆ]N, Δt=t/N, will be required. The first few terms in the present expansion constitute a fully quantum version of the short time propagator recently obtained by us using semiclassical methods [Chem. Phys. Lett. 151, 1 (1988)].
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 36 (1995), S. 2430-2457 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: Recent progress in numerical methods for evaluating the real-time path integral in dissipative harmonic environments is reviewed. Quasi-adiabatic propagators constructed numerically allow convergence of the path integral with large time increments. Integration of the harmonic bath leads to path integral expressions that incorporate the exact dynamics of the quantum particle along the adiabatic path, with an influence functional that describes nonadiabatic corrections. The resulting quasi-adiabatic propagator path integral is evaluated by efficient system-specific quadratures in most regimes of parameter space, although some cases are handled by grid Monte Carlo sampling. Exploiting the finite span of nonlocal influence functional interactions characteristic of broad condensed phase spectra leads to an iterative scheme for calculating the path integral over arbitrary time lengths. No uncontrolled approximations are introduced, and the resulting methodology converges to the exact quantum result with modest amounts of computational power. Applications to tunneling dynamics in the condensed phase are described. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 5616-5625 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present an efficient method for exact wave function propagation with several degrees of freedom based on time-dependent discrete variable representations (TD-DVR) of the evolution operator. The key idea is to use basis sets that evolve in time according to appropriate reference Hamiltonians to construct TD-DVR grids. The initial finite basis representation is chosen to include the initial wavefunction and thus the evolution under the bare zeroth order Hamiltonian is described at each time by a single DVR point. For this reason TD-DVR grids offer optimal representations in time-dependent calculations, allowing significant reduction of grid size and large time steps while requiring numerical effort that (for systems with several degrees of freedom) scales almost linearly with the total grid size. The method is readily applicable to systems described by time-dependent Hamiltonians. TD-DVR grids based on the time-dependent self-consistent field approximation are shown to be very useful in the study of intramolecular or collision dynamics. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 4600-4610 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: For common condensed phase problems described by a low-dimensional system coupled to a harmonic bath, Feynman's path integral formulation of time-dependent quantum mechanics leads to expressions for the reduced density matrix of the system where the effects of the harmonic environment enter through an influence functional that is nonlocal in time. In a recent Letter [Chem. Phys. Lett. 221, 482 (1994)], we demonstrated that the range of the nonlocal interactions is finite even at zero temperature, such that the nonlocal kernel extends over only a few time steps if the path integral is expressed in terms of accurate quasiadiabatic propagators. This feature arises from disruption of phase coherence in macroscopic environments and leads to Markovian dynamics for an augmented reduced density tensor, permitting iterative time evolution schemes. In the present paper we analyze the structure and properties of the relevant tensor propagator. Specifically, we show that the tensor multiplication scheme rigorously conserves the trace of the reduced density matrix, and that in cases of short-range nonlocality it leads to Redfield-type equations which are correct to all orders in perturbation theory and which take into account memory effects. We also argue that a simple eigenvector analysis reveals (without actual iteration) the nature of the dynamics and of the equilibrium state, and directly yields quantum reaction or relaxation rates. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 101 (1994), S. 6708-6716 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We propose an efficient path integral scheme for calculating the quantum dynamics of an arbitrary one-dimensional system coupled nonlinearly to many anharmonic noninteracting "bath'' degrees of freedom. The starting point is an improved discretization of the path integral in terms of numerically constructed propagators [Chem. Phys. Lett. 193, 435 (1992)]. The resulting influence functional is comprised of one-dimensional correlation functions with step-structured time-dependent potentials and therefore is similar in structure to that employed in the spin-boson calculations of Coalson [J. Chem. Phys. 86, 995 (1987)]. In the present case, though, the influence functional is nonlinear and is computed using numerical iterative wave function propagation methods. Numerical tests on a system coupled to ten anharmonic oscillators demonstrate the efficiency of the proposed scheme, which requires numerical effort that scales only linearly with the number of anharmonic bath degrees of freedom.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...