ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
  • 2
    Publication Date: 2016-02-12
    Description: The interannual variability of the South Adriatic Gyre and its relation to the wind vorticity and the large-scale climatic pattern (North Atlantic Oscillation – NAO) was studied using the time series of satellite altimetric data and ocean surface wind products. The cyclonic circulation observed in the southern Adriatic area was partly sustained by the local wind forcing, as suggested by the positive correlation between the rate of change of the current vorticity and the wind-stress vorticity. Nevertheless, the influence of vorticity advection from the adjacent area (northern Ionian Sea) cannot be ignored and it is more significant during the anticyclonic phase of Adriatic–Ionian Bimodal Oscillation System. The geostrophic current vorticities of the southern Adriatic and northern Ionian seas are correlated with a time lag of 14 months, which approximately corresponds to an advection speed of  ∼  1 cm s−1. The different wind patterns observed during two NAO phases in the winter revealed a stronger positive vorticity during the negative NAO phase. Conversely, during the wintertime positive NAO phase the wind vorticity is characterized by lower positive or slightly negative values. Despite a statistically significant negative correlation between the NAO index and the wind vorticity, no unequivocal relationship between large climatic system and the interannual variability of the South Adriatic Gyre intensity was found due to additional effects of the vorticity advection from the Ionian. This can be explained by the fact that the Ionian circulation mode does not depend on the NAO variations. Therefore, the main result of this study is that the interannual variability of the southern Adriatic cyclonic circulation is a result of the combined influence of the vorticity advection from the Ionian and the local wind-curl effect.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-10
    Description: The interannual variability of the South Adriatic Gyre and its relation to the wind vorticity and the large-scale climatic pattern (North Atlantic Oscillation – NAO), was studied using the time-series of satellite altimetry data and ocean surface wind products. The cyclonic circulation observed in the South Adriatic area was mainly sustained by the local wind forcing, as suggested by the positive correlation between the rate of change of the current vorticity and the wind-stress vorticity. Nevertheless, the influence of vorticity advection from the adjacent area (North Ionian Sea) cannot be ignored and it is more significant during the anticyclonic phase of Adriatic–Ionian Bimodal Oscillation System. The geostrophic current vorticities of the South Adriatic and North Ionian Seas are correlated with a time lag of 15 months, which corresponds to an advection speed of ~1 cm s−1. The different wind patterns observed during the two NAO phases revealed a stronger positive vorticity during the negative NAO phase. Conversely, during the positive NAO phase the wind vorticity is characterized by lower positive values. Subsequently, the calculated positive linear correlation between the NAO index and the frequency of the cold and dry northerly wind suggests the strengthening of the winter convection, and of the consecutive deep water formation, during the positive NAO phases. As a consequence of the winter deep convection, Southern Adriatic area is characterized by the late winter/early spring algal blooms. Relationship between the spatially averaged surface chlorophyll concentrations and the northerly wind frequencies revealed that the two biological productivity regimes likely exist: the subtropical one and the subpolar one depending on the frequency of windy days. We also showed that the bloom timing is a linear function of the wind frequency and can vary within the range of almost two months. This study thus contributes to our understanding of the possible impact of climate change on the SAG circulation and its ecosystem.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-21
    Description: In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted in phytoplankton biomass (i.e. chlorophyll a concentration) and size-based community composition (i.e. microphytoplankton, nanophytoplankton and picophytoplankton), using a~method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over five decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available in open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844485.
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-10-05
    Description: In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms has led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted into phytoplankton biomass (i.e., chlorophyll a concentration) and size-based community composition (i.e., microphytoplankton, nanophytoplankton and picophytoplankton), using a method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over 5 decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from the surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available on open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-12-13
    Description: Understanding the ocean carbon cycle requires a precise assessment of phytoplankton biomass in the oceans. In terms of numbers of observations, satellite data represents the largest available data set. However, as they are limited to surface waters, they have to be merged with in situ observations. Amongst the in situ data, fluorescence profiles constitute the greatest data set available, because fluorometers operate routinely on oceanographic cruise since the seventies. Nevertheless, fluorescence is only a proxy of the Total Chlorophyll-a concentration and a data calibration is required. Calibration issues are, however, source of uncertainty and they have prevented a systematic and wide range exploitation of the fluorescence data set. In particular, very few attempts to standardize the fluorescence data bases exist. Consequently, merged estimations with other data sources (i.e. satellite) are lacking. We propose a merging method to fill this gap. It consists firstly, in adjusting the fluorescence profile to impose a zero Chlorophyll-a concentration at depth. Secondly, each point of the fluorescence profile is then multiplied by a correction coefficient which forces the Chlorophyll-a integrated content measured on the fluorescence profile to be consistent with the concomitant ocean color observation. The method is close to the approach proposed by Boss et al. (2008) to calibrate fluorescence data of a profiling float, although important differences do exist. To develop and test our approach, in situ data from three open ocean stations (BATS, HOT and DYFAMED) were used. Comparison of the so-called "satellite-corrected" fluorescence profiles with concomitant bottle derived estimations of Chlorophyll-a concentration was performed to evaluate the final error, which resulted to be of about 31 %. Comparison with the Boss et al. (2008) method, carried out on a subset of the DYFAMED data set simulating a profiling float time series, demonstrated that the methods have similar accuracy. Applications of the method were then explored on two different data sets. Using fluorescence profiles at BATS, we show that the integration of "satellite-corrected" fluorescence profiles in Chlorophyll-a climatologies could improve both the statistical relevance of Chlorophyll-a averages and the vertical structure of the Chlorophyll-a field. We also show that our method could be efficiently used to process, within near-real time, profiles obtained by a fluorometer deployed on autonomous platforms, in our case a bio-optical profiling float. The wide application of the proposed method should provide a first step toward the generation of a merged satellite/fluorescence Chlorophyll-a product, as the "satellite-corrected" profiles should then be consistent with satellite observations. Improved climatologies and more consistent satellite and in situ data (comprising those from autonomous platforms) should strongly enhance the performance of present biogeochemical models.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-04-21
    Description: Although future changes in the seawater carbonate chemistry are well constrained, their impact on marine organisms and ecosystems remains poorly known. The biological response to ocean acidification is a recent field of research as most purposeful experiments have only been carried out in the late 1990s. The potentially dire consequences of ocean acidification attract scientists and students with a limited knowledge of the carbonate chemistry and its experimental manipulation. Hence, some guidelines on carbonate chemistry manipulations may be helpful for the growing ocean acidification community to maintain comparability. Perturbation experiments are one of the key approaches used to investigate the biological response to elevated pCO2. They are based on measurements of physiological or metabolic processes in organisms and communities exposed to seawater with normal or altered carbonate chemistry. Seawater chemistry can be manipulated in different ways depending on the facilities available and on the question being addressed. The goal of this paper is (1) to examine the benefits and drawbacks of various manipulation techniques and (2) to describe a new version of the R software package seacarb which includes new functions aimed at assisting the design of ocean acidification perturbation experiments. Three approaches closely mimic the on-going and future changes in the seawater carbonate chemistry: gas bubbling, addition of high-CO2 seawater as well as combined additions of acid and bicarbonate and/or carbonate.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-10-08
    Description: Although future changes in the seawater carbonate chemistry are well constrained, their impact on marine organisms and ecosystems remains poorly known. The biological response to ocean acidification is a recent field of research as most purposeful experiments have only been carried out in the late 1990s. The potentially dire consequences of ocean acidification attract scientists and students with a limited knowledge of the carbonate chemistry and its experimental manipulation. Hence, some guidelines on carbonate chemistry manipulations may be helpful for the growing ocean acidification community to maintain comparability. Perturbation experiments are one of the key approaches used to investigate the biological response to elevated pCO2. They are based on measurements of physiological or metabolic processes in organisms and communities exposed to seawater with normal or altered carbonate chemistry. Seawater chemistry can be manipulated in different ways depending on the facilities available and on the question being addressed. The goal of this paper is (1) to examine the benefits and drawbacks of various manipulation techniques and (2) to describe a new version of the R software package seacarb which includes new functions aimed at assisting the design of ocean acidification perturbation experiments. Three approaches closely mimic the on-going and future changes in the seawater carbonate chemistry: gas bubbling, addition of high-CO2 seawater as well as combined additions of acid and bicarbonate and/or carbonate.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-03-06
    Description: The distribution of the chlorophyll a concentration ([Chl a]) in the Mediterranean Sea, which is mainly obtained from satellite surface observations or from scattered in situ experiments, is updated by analyzing a database of fluorescence profiles calibrated into [Chl a]. The database, which includes 6790 fluorescence profiles from various origins, was processed with a dedicated quality control procedure. To ensure homogeneity between the different data sources, 65% of fluorescence profiles have been inter-calibrated on the basis of their concomitant satellite [Chl a] estimation. The climatological pattern of [Chl a] vertical profile in four key sites of the Mediterranean Sea has been analyzed. Climatological results confirm previous findings on the range of [Chl a] values and on the main Mediterranean trophic regimes. It also provides new insights on the seasonal variability of the shape of the vertical [Chl a] profile, inaccessible from remote sensing observations. An analysis based on the recognition of the general shape of the fluorescence profile was also performed. Although the shape of [Chl a] vertical distribution characterized by a deep chlorophyll maximum (DCM) is ubiquitous during summer, different forms are observed during winter, suggesting thus that factors affecting the vertical distribution of the biomass are complex and highly variable. The [Chl a] distribution in the Mediterranean Sea mimics, at smaller scales, what is observed in the Global Ocean. As already evidenced by analyzing satellite surface observations, mid-latitude and subtropical like phytoplankton dynamics coexist in the Mediterranean Sea. Moreover, the Mediterranean DCM variability appears characterized by patterns already observed at global scale.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-09
    Description: D'Ortenzio and Ribera d'Alcalà (2009, DR09 hereafter) divided the Mediterranean Sea into "bioregions" based on the climatological seasonality (phenology) of phytoplankton. Here we investigate the interannual variability of this bioregionalization. Using 16 years of available ocean color observations (i.e. SeaWiFS and MODIS), we analyzed the spatial distribution of the DR09 trophic regimes on an annual basis. Additionally, we identified new trophic regimes, with seasonal cycles of phytoplankton biomass different from the DR09 climatological description and named "Anomalous". Overall, the classification of the Mediterranean phytoplankton phenology proposed by DR09 (i.e. "No Bloom", "Intermittently", "Bloom" and "Coastal"), is confirmed to be representative of most of the Mediterranean phytoplankton phenologies. The mean spatial distribution of these trophic regimes (i.e. bioregions) over the 16 years studied is also similar to the one proposed by DR09. But at regional scale some annual differences, in their spatial distribution and in the emergence of "Anomalous" trophic regimes, were observed compared to the DR09 description. These dissimilarities with the DR09 study were related to interannual variability in the sub-basin forcing: winter deep convection events, frontal instabilities, inflow of Atlantic or Black Sea Waters and river run-off. The large assortment of phytoplankton phenologies identified in the Mediterranean Sea is thus verified at interannual level, confirming the "sentinel" role of this basin to detect the impact of climate changes on the pelagic environment.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...