ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-09-27
    Description: The significant climate feedback of stratospheric water vapor (SWV) necessitates quantitative estimates of SWV budget changes. Model simulations driven by the newest European Centre for Medium‐Range Weather Forecast reanalysis ERA5, satellite observations from the Stratospheric Water and OzOne Satellite Homogenized data set, Microwave Limb Sounder, and in situ frost point hygrometer observations from Boulder all show substantial and persistent stratospheric moistening after a sharp drop in water vapor at the turn of the millennium. This moistening occurred mainly during 2000–2006 and SWV abundances then remained high over the last decade. We find strong positive trends in the Northern Hemisphere and weak negative trends over the South Pole, mainly during austral winter. Moistening of the tropical stratosphere after 2000 occurred during late boreal winter/spring, reached values of ∼0.2 ppm/decade, was well correlated with a warming of the cold point tropopause by ∼0.4 K/decade and can only be partially attributed to El Nino‐Southern Oscillation and volcanic eruptions.
    Description: Plain Language Summary: Water vapor is an effective greenhouse gas. Human‐induced climate change has led to warmer air in the troposphere, which consequently can hold more moisture, thus enhancing the greenhouse effect. The long‐term change in stratospheric water vapor (SWV) is less clear and currently under debate. Using satellite observations, balloon soundings and model simulations, we find an increase of SWV after 2000. This moistening occurred mainly during 2000–2006 and the stratospheric moisture content then remained high over the last decade. The increase of SWV is stronger in the Northern than in the Southern Hemisphere. Over the South Pole, a weak decrease was found. Moistening of the tropical stratosphere occurred mainly during late winter and spring, and was in line with warming of the tropical tropopause, the coldest region that separates the troposphere and stratosphere. Natural causes such as volcanic eruptions cannot completely explain this stratospheric moistening.
    Description: Key Points: Stratospheric moistening after 2000 is clearly detectable in ERA5‐driven simulations, satellite and in situ observations. Hemispheric asymmetry is found with strong positive trends in the Northern Hemisphere and weak negative trends over the South Pole. Moistening of the lower tropical stratosphere is only partially caused by El Nino‐Southern Oscillation and volcanic eruptions.
    Description: https://doi.org/10.5067/Aura/MLS/DATA2508
    Description: https://doi.org/10.5067/GLOSSAC-L3-V2.0
    Description: https://doi.org/10.5067/GLOSSAC-L3-V2.0
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-01
    Description: Simply diagnostic tools are useful for understanding transport processes in complex chemistry transport models (CTMs). For this purpose, a combined use of the airmass origin fractions (AOFs) and regionally resolved mean ages (RMAs) is presented. This approach merges the concept of the origin of air with the well-known theory of the mean age of air (AoA) for different regions covering the whole Earth. The authors show how the AoA calculated relative to Earth’s surface can be decomposed into regionally resolved components (i.e., into RMAs). Using both AOFs and RMAs, the authors discuss differences in the seasonality of transport from the Northern and Southern Hemispheres into the tropical tropopause layer (TTL), the asymmetries of the interhemispheric exchange, and differences in relation to the continental or oceanic origin of air. Furthermore, a simplified transport model for a chemically passive species (tracer) is formulated that has some potential to approximate the full transport within a CTM. This analytic approach uses the AOFs as well as the RMAs as parameters to propagate a tracer prescribed on Earth’s surface (lower boundary condition). This method is exactly valid for sources that change linearly with time in each of the considered regions. The authors analyze how well this approach approximates the propagation of CO2 from the planetary boundary layer (PBL) into the whole atmosphere. The CO2 values in the PBL are specified by the CarbonTracker dataset. The authors discuss how this approach can be used for inverse modeling of CO2.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-29
    Description: We examine differences among reanalysis high-cloud products in the tropics, assess the impacts of these differences on radiation budgets at the top of the atmosphere and within the tropical upper troposphere and lower stratosphere (UTLS), and discuss their possible origins in the context of the reanalysis models. We focus on the ERA5 (fifth-generation European Centre for Medium-range Weather Forecasts – ECMWF – reanalysis), ERA-Interim (ECMWF Interim Reanalysis), JRA-55 (Japanese 55-year Reanalysis), MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications, Version 2), and CFSR/CFSv2 (Climate Forecast System Reanalysis/Climate Forecast System Version 2) reanalyses. As a general rule, JRA-55 produces the smallest tropical high-cloud fractions and cloud water contents among the reanalyses, while MERRA-2 produces the largest. Accordingly, long-wave cloud radiative effects are relatively weak in JRA-55 and relatively strong in MERRA-2. Only MERRA-2 and ERA5 among the reanalyses produce tropical-mean values of outgoing long-wave radiation (OLR) close to those observed, but ERA5 tends to underestimate cloud effects, while MERRA-2 tends to overestimate variability. ERA5 also produces distributions of long-wave, short-wave, and total cloud radiative effects at the top of the atmosphere that are very consistent with those observed. The other reanalyses all exhibit substantial biases in at least one of these metrics, although compensation between the long-wave and short-wave effects helps to constrain biases in the total cloud radiative effect for most reanalyses. The vertical distribution of cloud water content emerges as a key difference between ERA-Interim and other reanalyses. Whereas ERA-Interim shows a monotonic decrease of cloud water content with increasing height, the other reanalyses all produce distinct anvil layers. The latter is in better agreement with observations and yields very different profiles of radiative heating in the UTLS. For example, whereas the altitude of the level of zero net radiative heating tends to be lower in convective regions than in the rest of the tropics in ERA-Interim, the opposite is true for the other four reanalyses. Differences in cloud water content also help to explain systematic differences in radiative heating in the tropical lower stratosphere among the reanalyses. We discuss several ways in which aspects of the cloud and convection schemes impact the tropical environment. Discrepancies in the vertical profiles of temperature and specific humidity in convective regions are particularly noteworthy, as these variables are directly constrained by data assimilation, are widely used, and feed back to convective behaviour through their relationships with thermodynamic stability.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-03-01
    Print ISSN: 1352-2310
    Electronic ISSN: 1873-2844
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-12-20
    Description: Transport of pollutants into the stratosphere via the Asian summer monsoon (ASM) or North American summer monsoon (NASM) may affect the atmospheric composition and climate both locally and globally. We identify and study the robust characteristics of transport from the ASM and NASM regions to the stratosphere using the Lagrangian chemistry transport model CLaMS driven by both the ERA-Interim and MERRA-2 reanalyses. In particular, we quantify the relative influences of the ASM and NASM on stratospheric composition and investigate the transport pathways and efficiencies of transport of air masses originating at different altitudes in these two monsoon regions to the stratosphere. We release artificial tracers in several vertical layers from the middle troposphere to the lower stratosphere in both ASM and NASM source regions during July and August 2010–2013 and track their evolution until the following summer. We find that more air mass is transported from the ASM and NASM regions to the tropical stratosphere, and even to the southern hemispheric stratosphere, when the tracers are released clearly below the tropopause (350–360 K) than when they are released close to the tropopause (370–380 K). For tracers released close to the tropopause (370–380 K), transport is primarily into the northern hemispheric lower stratosphere. Results for different vertical layers of air origin reveal two transport pathways from the upper troposphere over the ASM and NASM regions to the tropical pipe: (i) quasi-horizontal transport to the tropics below the tropopause followed by ascent to the stratosphere via tropical upwelling, and (ii) ascent into the stratosphere inside the ASM/NASM followed by quasi-horizontal transport to the tropical lower stratosphere and further to the tropical pipe. Overall, the tropical pathway (i) is faster than the monsoon pathway (ii), particularly in the ascending branch. The abundance of air in the tropical pipe that originates in the ASM upper troposphere (350–360 K) is comparable to the abundance of air ascending directly from the tropics to the tropical pipe 10 months after (the following early summer) the release of the source tracers. The air mass contributions from the ASM to the tropical pipe are about 3 times larger than the corresponding contributions from the NASM. The transport efficiency into the tropical pipe, the air mass fraction inside this destination region normalized by the mass of the domain of origin, is greatest from the ASM region at 370–380 K. Although the contribution from the NASM to the stratosphere is less than that from either the ASM or the tropics, the transport efficiency from the NASM is comparable to that from the tropics.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-01-01
    Print ISSN: 1352-2310
    Electronic ISSN: 1873-2844
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-10-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-01-11
    Description: The stratospheric Brewer–Dobson circulation (BDC) determines the transport and atmospheric lifetime of key radiatively active trace gases and further impacts surface climate through downward coupling. Here, we quantify the variability in the lower stratospheric BDC induced by the El Niño–Southern Oscillation (ENSO), using satellite trace gas measurements and simulations with the Lagrangian chemistry transport model, CLaMS, driven by ERA-Interim and JRA-55 reanalyses. We show that despite discrepancies in the deseasonalized ozone (O3) mixing ratios between CLaMS simulations and satellite observations, the patterns of changes in the lower stratospheric O3 anomalies induced by ENSO agree remarkably well over the 2005–2016 period. Particularly during the most recent El Niño in 2015–2016, both satellite observations and CLaMS simulations show the largest negative tropical O3 anomaly in the record. Regression analysis of different metrics of the BDC strength, including mean age of air, vertical velocity, residual circulation, and age spectrum, shows clear evidence of structural changes in the BDC in the lower stratosphere induced by El Niño, consistent with observed O3 anomalies. These structural changes during El Niño include a weakening of the transition branch of the BDC between about 370 and 420 K (∼100–70 hPa) and equatorward of about 60∘ and a strengthening of the shallow branch at the same latitudes and between about 420 and 500 K (∼70–30 hPa). The slowdown of the transition branch is due to an upward shift in the dissipation height of the large-scale and gravity waves, while the strengthening of the shallow branch results mainly from enhanced gravity wave breaking in the tropics–subtropics combined with enhanced planetary wave breaking at high latitudes. The strengthening of the shallow branch induces negative tropical O3 anomalies due to enhanced tropical upwelling, while the weakening of the transition branch combined with enhanced downwelling due to the strengthening shallow branch leads to positive O3 anomalies in the extratropical upper troposphere–lower stratosphere (UTLS). Our results suggest that a shift in the ENSO basic state toward more frequent El Niño-like conditions in a warmer future climate will substantially alter UTLS trace gas distributions due to these changes in the vertical structure of the stratospheric circulation.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-03-11
    Description: The European Centre for Medium-Range Weather Forecasts' (ECMWF's) next-generation reanalysis ERA5 provides many improvements, but it also confronts the community with a “big data” challenge. Data storage requirements for ERA5 increase by a factor of ∼80 compared with the ERA-Interim reanalysis, introduced a decade ago. Considering the significant increase in resources required for working with the new ERA5 data set, it is important to assess its impact on Lagrangian transport simulations. To quantify the differences between transport simulations using ERA5 and ERA-Interim data, we analyzed comprehensive global sets of 10-day forward trajectories for the free troposphere and the stratosphere for the year 2017. The new ERA5 data have a considerable impact on the simulations. Spatial transport deviations between ERA5 and ERA-Interim trajectories are up to an order of magnitude larger than those caused by parameterized diffusion and subgrid-scale wind fluctuations after 1 day and still up to a factor of 2–3 larger after 10 days. Depending on the height range, the spatial differences between the trajectories map into deviations as large as 3 K in temperature, 30 % in specific humidity, 1.8 % in potential temperature, and 50 % in potential vorticity after 1 day. Part of the differences between ERA5 and ERA-Interim is attributed to the better spatial and temporal resolution of the ERA5 reanalysis, which allows for a better representation of convective updrafts, gravity waves, tropical cyclones, and other meso- to synoptic-scale features of the atmosphere. Another important finding is that ERA5 trajectories exhibit significantly improved conservation of potential temperature in the stratosphere, pointing to an improved consistency of ECMWF's forecast model and observations that leads to smaller data assimilation increments. We conducted a number of downsampling experiments with the ERA5 data, in which we reduced the numbers of meteorological time steps, vertical levels, and horizontal grid points. Significant differences remain present in the transport simulations, if we downsample the ERA5 data to a resolution similar to ERA-Interim. This points to substantial changes of the forecast model, observations, and assimilation system of ERA5 in addition to improved resolution. A comparison of two Lagrangian trajectory models allowed us to assess the readiness of the codes and workflows to handle the comprehensive ERA5 data and to demonstrate the consistency of the simulation results. Our results will help to guide future Lagrangian transport studies attempting to navigate the increased computational complexity and leverage the considerable benefits and improvements of ECMWF's new ERA5 data set.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-09-11
    Description: The stratospheric circulation determines the transport and lifetime of key trace gases in a changing climate, including water vapor and ozone, which radiatively impact surface climate. The unusually warm El Niño–Southern Oscillation (ENSO) event aligned with a disrupted Quasi-Biennial Oscillation (QBO) caused an unprecedented perturbation to this circulation in 2015–2016. Here, we quantify the impact of the alignment of these two phenomena in 2015–2016 on lower stratospheric water vapor and ozone from satellite observations. We show that the warm ENSO event substantially increased water vapor and decreased ozone in the tropical lower stratosphere. The QBO disruption significantly decreased global lower stratospheric water vapor and tropical ozone from early spring to late autumn. Thus, this QBO disruption reversed the lower stratosphere moistening triggered by the alignment of the warm ENSO event with westerly QBO in early boreal winter. Our results suggest that the interplay of ENSO events and QBO phases will be crucial for the distributions of radiatively active trace gases in a changing future climate, when increasing El Niño-like conditions and a decreasing lower stratospheric QBO amplitude are expected.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...