ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-21
    Description: Antiretroviral drugs and antibodies limit HIV-1 infection by interfering with the viral life cycle. In addition, antibodies also have the potential to guide host immune effector cells to kill HIV-1-infected cells. Examination of the kinetics of HIV-1 suppression in infected individuals by passively administered 3BNC117, a broadly neutralizing antibody, suggested that the effects of the antibody are not limited to free viral clearance and blocking new infection but also include acceleration of infected cell clearance. Consistent with these observations, we find that broadly neutralizing antibodies can target CD4(+) T cells infected with patient viruses and can decrease their in vivo half-lives by a mechanism that requires Fcgamma receptor engagement in a humanized mouse model. The results indicate that passive immunotherapy can accelerate elimination of HIV-1-infected cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Ching-Lan -- Murakowski, Dariusz K -- Bournazos, Stylianos -- Schoofs, Till -- Sarkar, Debolina -- Halper-Stromberg, Ariel -- Horwitz, Joshua A -- Nogueira, Lilian -- Golijanin, Jovana -- Gazumyan, Anna -- Ravetch, Jeffrey V -- Caskey, Marina -- Chakraborty, Arup K -- Nussenzweig, Michel C -- 1UM1 AI100663-01/AI/NIAID NIH HHS/ -- 8 UL1 TR000043/TR/NCATS NIH HHS/ -- AI081677-05/AI/NIAID NIH HHS/ -- AI100148-02/AI/NIAID NIH HHS/ -- F31 AI118555-01/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 May 20;352(6288):1001-4. doi: 10.1126/science.aaf1279. Epub 2016 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY 10065, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA. ; Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. nussen@rockefeller.edu arupc@mit.edu. ; Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Howard Hughes Medical Institute. nussen@rockefeller.edu arupc@mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27199430" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-28
    Description: Despite the success of potent anti-retroviral drugs in controlling human immunodeficiency virus type 1 (HIV-1) infection, little progress has been made in generating an effective HIV-1 vaccine. Although passive transfer of anti-HIV-1 broadly neutralizing antibodies can protect mice or macaques against a single high-dose challenge with HIV or simian/human (SIV/HIV) chimaeric viruses (SHIVs) respectively, the long-term efficacy of a passive antibody transfer approach for HIV-1 has not been examined. Here we show, on the basis of the relatively long-term protection conferred by hepatitis A immune globulin, the efficacy of a single injection (20 mg kg(-1)) of four anti-HIV-1-neutralizing monoclonal antibodies (VRC01, VRC01-LS, 3BNC117, and 10-1074 (refs 9 - 12)) in blocking repeated weekly low-dose virus challenges of the clade B SHIVAD8. Compared with control animals, which required two to six challenges (median = 3) for infection, a single broadly neutralizing antibody infusion prevented virus acquisition for up to 23 weekly challenges. This effect depended on antibody potency and half-life. The highest levels of plasma-neutralizing activity and, correspondingly, the longest protection were found in monkeys administered the more potent antibodies 3BNC117 and 10-1074 (median = 13 and 12.5 weeks, respectively). VRC01, which showed lower plasma-neutralizing activity, protected for a shorter time (median = 8 weeks). The introduction of a mutation that extends antibody half-life into the crystallizable fragment (Fc) domain of VRC01 increased median protection from 8 to 14.5 weeks. If administered to populations at high risk of HIV-1 transmission, such an immunoprophylaxis regimen could have a major impact on virus transmission.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gautam, Rajeev -- Nishimura, Yoshiaki -- Pegu, Amarendra -- Nason, Martha C -- Klein, Florian -- Gazumyan, Anna -- Golijanin, Jovana -- Buckler-White, Alicia -- Sadjadpour, Reza -- Wang, Keyun -- Mankoff, Zachary -- Schmidt, Stephen D -- Lifson, Jeffrey D -- Mascola, John R -- Nussenzweig, Michel C -- Martin, Malcolm A -- AI-100148/AI/NIAID NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- UM1 AI100663-01/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2016 May 5;533(7601):105-9. doi: 10.1038/nature17677. Epub 2016 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA. ; Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany. ; Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27120156" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/administration & dosage/immunology ; Animals ; Antibodies, Monoclonal/administration & dosage/blood/genetics/immunology ; Antibodies, Neutralizing/administration & dosage/blood/genetics/immunology ; Female ; HIV Antibodies/*administration & dosage/blood/genetics/*immunology ; HIV Infections/immunology/prevention & control/transmission ; Half-Life ; Immunoglobulin Fc Fragments/chemistry/genetics/immunology ; Macaca mulatta/immunology/virology ; Male ; Mutation/genetics ; Protein Structure, Tertiary ; SAIDS Vaccines/administration & dosage/immunology ; Simian Acquired Immunodeficiency Syndrome/blood/*immunology/*prevention & control ; Simian Immunodeficiency Virus/*immunology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-13
    Description: B cells undergo rapid cell division and affinity maturation in anatomically distinct sites in lymphoid organs called germinal centers (GCs). Homeostasis is maintained in part by B cell apoptosis. However, the precise contribution of apoptosis to GC biology and selection is not well defined. We developed apoptosis-indicator mice and used them to visualize, purify, and characterize dying GC B cells. Apoptosis is prevalent in the GC, with up to half of all GC B cells dying every 6 hours. Moreover, programmed cell death is differentially regulated in the light zone and the dark zone: Light-zone B cells die by default if they are not positively selected, whereas dark-zone cells die when their antigen receptors are damaged by activation-induced cytidine deaminase.
    Keywords: Immunology, Online Only
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-10-19
    Description: Bladder cancer is the fifth most common in incidence and one of the most expensive cancers to treat. Early detection greatly improves the chances of survival and bladder preservation. The pH low insertion peptide (pHLIP) conjugated with a near-infrared fluorescent dye [indocyanine green (ICG)] targets low extracellular pH, allowing visualization...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...