ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Environmental Pollution 83 (1994), S. 95-111 
    ISSN: 0269-7491
    Keywords: acidification ; agriculture ; climate change ; eutrophication ; greenhouse gases
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 61 (1974), S. 403-403 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 62 (1975), S. 238-238 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 26 (1990), S. 253-269 
    ISSN: 1573-0867
    Keywords: Nitrogen ; phosphorus ; sulphur ; nutrient balances ; surface waters ; North Sea ; Baltic Sea ; eutrophication ; hypertrophication ; primary production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Dissolved inorganic nitrogen and phosphorus, their relationship to each other (DIN/DIP) as predisposing (nutrient) factors, as well as prevailing weather as a triggering factor all work together to induce the primary production and hence the eutrophication (hypertrophication) process in surface waters. Sulfate likewise is a decisive predisposing factor influencing the eutrophication process by reducing N availability but increasing P availability and thus acting towards an N limitation of the primary production. This is one of the reasons why marine (coastal) waters and estuaries often exhibit N limitation with respect to primary production, while freshwater ecosystems often tend to exhibit P limitation. Within the N and P balance of agriculture of some countries of Western Europe (Netherlands, Denmark, Switzerland, FRG, UK and Sweden for N, resp. Netherlands, FRG and GDR for P) more the level than the efficiency of the N and P applications indicates the extent of the nutrient surplus. Despite 59–73% N utilization in plant production, the rate of 13–23% for agriculture as a whole equals to the 12–21% efficiency of N use in animal production. The varying N surplus in agriculture in the separate countries of 124 to 465 kg N ha−1 a−1 is determined almost exclusively by the level of the N application and not by its efficiency. The situation is similar for P: In spite of P utilization in plant production of 59–76%, P utilization in total agriculture is only 11–38%, or comparable to the P efficiency within animal production of 10–34%. The differing P excess balance of 55 to 88 kg P2O5 ha−1 a−1 is influenced by the level of the P application. The N and P efficacy of total agriculture hence is determined almost completely by that of animal production, since 83–95% (N basis) and 76–94% (P basis) of the total plant production (on top of the nationally varying levels of N and P use via imported feeds) are fed to animals — with the low N and P utilization cited above. Agriculture's share of the N and P emissions into surface water of several countries/regions in Western Europe (FRG, Netherlands, Italy, Denmark, Switzerland, Norway) ranges from 37 to 82% resp. 27 to 38%. Its share in the flus into the North Sea catchment basin will be about 60% for N and 25% for P related only to the anthropogenic material carried by the rivers. Agriculture's share in the atmospheric N emissions into the North and Baltic Seas can be estimated at about 65% or 55%, resp. while the remaining approx. 35% or 45%, resp. are traceable primarily to anthropogenic burning processes. For agriculture the priority lies in limiting N emissions into surface water caused by leaching, erosion and NH3 emissions, and reducing P emissions mainly through soil conservation (protection against erosion) and water protection. As regards N this means a demand for comprehensive protection of groundwater and atmosphere differentiated according to the potential for losses or the risk of losses on a site, also outside the protection zones. As regards P only those areas can be included in the demand for reduction of emissions that are actually threatened by erosion or surface runoff. Plenty of short-term and long-term measures are available to agriculture to reduce N and P emissions. Especially the long-range measures (such as creating nutrient balances on farms and fields, the integration of animal and plant production, maintaining maximum livestock densities according to the ability of areas to absorb nutrients, altered feeding programs in animal nutrition, changes in livestock keeping (slurry→deep litter), increasing the internal and external recycling of N and P) are capable of bringing about a satisfactory degree of success within the next 20 to 30 years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 52 (1998), S. 289-301 
    ISSN: 1573-0867
    Keywords: food production and consumption ; mitigation strategies ; nitrogen ; nitrogen emission ; nitrous oxide ; sustainability of human N cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract During the past four decades the authors perceive that an increasing non-sustainability (Disintegration) within the agriculture , human nutrition, waste management complex has occurred both in Germany and the European Union. Compared to the basic needs of the population for nutritive energy, fat and protein, we estimate that the production and consumption of food and feed is more than 50% higher than necessary. Using nitrogen (N) input into German agriculture in 1991/92 as an example, we estimated that the N input of 191 kg ha-1 was 2 to 3 times too high. This high N input resulted in the net biomass production of 45 kg ha-1, a 25% efficiency. This inefficiency causes emissions of reactive N and other nutrient compounds into the hydrosphere and atmosphere that were 2 to 8 times too high. For example the contributions of agriculture to the total annual N2O–N emissions of Germany (during 1990–1992), Europe (1990) and of the world (1989) were 110, 691 Gg and 6.7 Tg or 52, 62 and 41%, respectively. The authors demonstrate that emissions of N and P from Germany and EU waste water management systems are also higher than necessary because nutrient recycling is not practiced extensively. Excessive food production and consumption has made the agriculture/human nutrition/waste and waste water complex, like the energy/transportation complex, a main cause of new transboundary environmental damage such as soil and water acidification, hypertrophication of near-natural terrestrial and aquatic ecosystems and climate change. We propose that a sustainable food production/consumption system can be developed that is based both on need-oriented production and consumption with no net exports and on recovery, recycling and more efficient use of nutrients. Using N as an example, the authors show which short and long term action aims must be set and realized by the year 2015, to meet environmental, economical and social sustainability requisites. The suggested, assumed sustainable N balance for German agriculture is characterized by a critical annual input and surplus maximum of 80 and 45 kg N ha-1 respectively, which should almost double biomass production efficiency for N utilization. This estimate is based on reducing animal stocking rates to 0.5 gross weight unit ha-1 to attain no net mineralization or immobilization of N in the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 65 (1978), S. 596-597 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1990-12-01
    Print ISSN: 1385-1314
    Electronic ISSN: 1573-0867
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1974-09-01
    Print ISSN: 0028-1042
    Electronic ISSN: 1432-1904
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-01-01
    Print ISSN: 0269-7491
    Electronic ISSN: 1873-6424
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1994-01-01
    Print ISSN: 0269-7491
    Electronic ISSN: 1873-6424
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...