ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-11-01
    Print ISSN: 0273-1177
    Electronic ISSN: 1879-1948
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-01
    Print ISSN: 0264-8172
    Electronic ISSN: 1873-4073
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: Highlights • A multipurpose drone has been designed and constructed to access and sample extreme environments. • Gas, water, and mud sampling is coupled with temperature measurements, video records, photogrammetry, infra-red, and gas distribution mapping. • Successful missions have been completed at the active Lusi eruption site. • The drone is an excellent tool to study harsh or unreachable sites where conventional operations are too expensive, dangerous or impossible. Abstract Extreme and inaccessible environments are a new frontier that unmanned and remotely operated vehicles can today safely access and monitor. The Lusi mud eruption (NE Java Island, Indonesia) represents one of these harsh environments that are totally unreachable with traditional techniques. Here boiling mud is constantly spewed tens of meters in height and tall gas clouds surround the 100 m wide active crater. The crater is surrounded by a ∼600 m diameter circular zone of hot mud that prevents any approach to investigate and sample the eruption site. In order to access this active crater we designed and assembled a multipurpose drone. The Lusi drone is equipped with numerous airborne devices suitable for use on board of other multicopters. During the missions, three cameras can complete 1) video survey, 2) high resolution photogrammetry of desired and preselected polygons, and 3) thermal photogrammetry surveys with infra-red camera to locate hot fluids seepage areas or faulted zones. Crater sampling and monitoring operations can be pre-planned with a flight software, and the pilot is required only for take-off and landing. A winch allows the deployment of gas, mud and water samplers and contact thermometers to be operated with no risk for the aircraft. During the winch operations (that can be performed automatically), the aircraft hovers at a safety height until the tasks controlled by the winch-embedded processor are completed. The drone is also equipped with GPS-connected CO2 and CH4 sensors. Gridded surveys using these devices allowed obtaining 2D maps of the concentration and distribution of various gasses over the area covered by the flight path. The device is solid, stable even with significant wind, affordable, and easy to transport. The Lusi drone successfully operated during several expeditions at the ongoing active Lusi eruption site and proved to be an excellent tool to study other harsh or unreachable sites, where operations with more conventional methods are too expensive, dangerous or simply impossible.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-21
    Description: Stratospheric balloons are powerful and affordable tools for a wide spectrum of scientific investigations that are carried out at the stratosphere level. They are less expensive compared to satellite projects and have the capability to lift payloads from a few kilograms to a couple of tons or more, well above the troposphere, for more than a month. Another interesting feature of these balloons, which is not viable in satellites, is the short turnaround time, which enables frequent flights. We introduce the PEGASO (Polar Explorer for Geomagnetism And other Scientific Observations) project, a stratospheric payload designed and developed by the INGV (Istituto Nazionale di Geofisica e Vulcanologia), Rome and La Sapienza University, Rome. The project was sponsored by the PNRA (Progetto Nazionale di Ricerche in Antartide), Italy (Peterzen et al., 2003). This light payload (10 kg) was used by the Italian Space Agency (ASI) and Andoya Rocket Range (ARR) for five different scientific missions. PEGASO carries a 3-component flux-gate magnetometer, uses a solar cell array as the power source and has a GPS location system. The bi-directional telemetry system for data transfer and the remote control system were IRIDIUM based
    Description: INGV, PNRA, ASI, ARR, CNR, La Sapienza
    Description: Published
    Description: Beijing, China
    Description: 1.10. TTC - Telerilevamento
    Description: open
    Keywords: LDB ; Polar areas ; Magnetometer ; Stratosphere ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-21
    Description: Stratospheric balloons are powerful and affordable tools for a wide spectrum of scientific investigations that are carried out at the stratosphere level. They are less expensive compared to satellite projects and have the capability to lift payloads from a few kilograms to a couple of tons or more, well above the troposphere, for more than a month. Another interesting feature of these balloons, which is not viable in satellites, is the short turnaround time, which enables frequent flights. We introduce the PEGASO (Polar Explorer for Geomagnetism And other Scientific Observations) project, a stratospheric payload designed and developed by the INGV (Istituto Nazionale di Geofisica e Vulcanologia), Rome and La Sapienza University, Rome. The project was sponsored by the PNRA (Progetto Nazionale di Ricerche in Antartide), Italy (Peterzen et al., 2003). This light payload (10 kg) was used by the Italian Space Agency (ASI) and Andoya Rocket Range (ARR) for five different scientific missions. PEGASO carries a 3-component flux-gate magnetometer, uses a solar cell array as the power source and has a GPS location system. The bi-directional telemetry system for data transfer and the remote control system were IRIDIUM based.
    Description: Published
    Description: 1633-1640
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: reserved
    Keywords: LDB ; Magnetometer ; Polar-areas ; Stratosphere ; 01. Atmosphere::01.03. Magnetosphere::01.03.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-21
    Description: In a joint effort, the Italian Space Agency (ASI) and Andoya Rocket Range (ARR) have initiated the development of a European balloon center in Svalbard, Norway that is an ideal location for performing Long Duration Balloon (LDB) flights. After the identification of the launch location several light balloon flights have been performed since 2003. The 2004 campaign utilized a 10000 m³ balloon produced for the program by Aerostar of Sulfur Springs, Texas USA. This flight lasted 40 days and was an excellent test of the small PEGASO payload, developed (for use in Antarctica) by the National Institute of Geophysics and Volcanology (INGV) with the PNRA (Progetto Nazionale di Ricerche in Antartide) sponsorship. This payload uses an IRIDIUM based bi-directional telemetry system. During summer 2005 two flights have been performed using balloons of the same size. They carried an updated telemetry and a scientific payload which analyzed the magnetic field of the Earth. The Institute of Information Science and Technology (ISTI-CNR) team computed predictions of the balloons trajectories, both before and during flights, as well as statistical evaluations of the seasonal flight windows at the beginning of the ASI LDB program. The 2004 and 2005 missions have been defined to investigate the stratospheric winds structure and they tested the possibility for future heavy LDB flights. The Italian scientific community foresees this kind of missions from 2007-2008 campaigns. Next sections, starting from a general overview of the Italian LDB program, give the description of the Pegaso flights and, in particular, the adopted technical solutions for the on-board and ground-based equipments.
    Description: Published
    Description: VOLTERRA, PISA
    Description: 1.10. TTC - Telerilevamento
    Description: open
    Keywords: LDB ; Polar areas ; Magnetometer ; Stratosphere ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-21
    Description: PEGASO (Polar Explorer for Geomagnetic And other Scientific Observation) program has been created to conduct small experiments in as many disciplines on-board of small stratospheric balloons. PEGASO uses the very low expensive pathfinder balloons. Stratospheric pathfinders are small balloons commonly used to explore the atmospheric circumpolar upper winds and to predict the trajectory for big LDBs (Long Duration Balloons). Installing scientific instruments on pathfinder and using solar energy to power supply the system, we have the opportunity to explorer the Polar Regions, during the polar summer, following circular trajectory. These stratospheric small payload have flown for 14 up to 40 days, measuring the magnetic field of polar region, by means of 3-axis-fluxgate magnetometer. PEGASO payload uses IRIDIUM satellite telemetry (TM). A ground station communicates with one or more payloads to download scientific and house-keeping data and to send commands for ballast releasing, for system resetting and for operating on the separator system at the flight end. The PEGASO missions have been performed from the Svalbard islands with the logistic collaboration of the Andoya Rocket Range and from the Antarctic Italian base. Continuous trajectory predictions, elaborated by Institute of Information Science and Technology (ISTI-CNR), were necessary for the flight safety requirements in the north hemisphere. This light payloads (〈10 Kg) are realized by the cooperation between the INGV and the Physics department “La Sapienza” University and it has operated five times in polar areas with the sponsorship of Italian Antarctic Program (PNRA), Italian Space Agency (ASI). This paper summarizes important results about stratospheric missions.
    Description: PNRA, ASI.
    Description: Published
    Description: 940-945
    Description: 5IT. Osservazioni satellitari
    Description: N/A or not JCR
    Description: open
    Keywords: LDB ; Magnetometer ; Stratosphere ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Un alimentatore solare può essere un oggetto sofisticato: quello che è stato realizzato dall’LNTS (Laboratori Nuove Tecologie Strumenti, UF Laboratori, Roma1) è una tessera del progetto STRADIUM (ASI), e fa tesoro dell’esperienza acquisita nella progettazione degli alimentatori del progetto PEGASO [Iarocci et al., 2008]. Nato per l’uso in stratosfera, l’alimentatore si presta benissimo all’uso in stazioni geofisiche remote. L’alimentatore accetta tre pannelli solari in ingresso ed utilizza due batterie di elementi Sn-Pb tenendo conto della variazione delle caratteristiche di carica con la temperatura. L’intervallo di temperatura di funzionamento, batterie comprese, va da –50 a + 60°C. La pressione di esercizio va da 1 bar a 5 mbar (dal livello del mare a 35 Km). Questi valori sono stati verificati sul prototipo, batterie comprese, in camera termovuoto. Le pagine che seguono sono quelle del manuale scritto a corredo dell’apparecchio: forniscono una descrizione fedele del principio di funzionamento e del dettaglio tecnico. Le seguenti figure fuori testo illustrano alcune delle fasi di costruzione e verifica del prototipo.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: open
    Keywords: power module ; solar panels ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: This guide reports the description of the experimental apparata in use in the experimental petrology along with an accurate description of some applications of these instrumentations. After a brief introduction concerning what is the experimental petrology and what is used for, we provide a description of the starting materials used in this field of the Earth Sciences. Moreover, particular attention is focused on these apparata used all around the world. We, finally, introduce some examples of different studies conducted with the different experimental equipments. The aim of this guide is, then, to give information concerning the equipments and their potentiality.
    Description: Published
    Description: 1-20
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: N/A or not JCR
    Description: open
    Keywords: Piston cylinder ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Il dispositivo qui presentato è stato realizzato per lo studio della propagazione di onde elastiche in campioni di roccia [Wood A. W. Et al. 1955]. Mediante tale tecnica si riescono a determinare alcune caratteristiche fisiche delle rocce. Si tratta di un generatore di impulsi ad alta tensione, necessario per l’eccitazione di trasduttori piezoelettrici. La durata dell’impulso generato è di 1 s, l’ampiezza dell’ordine del kVolt. Il metodo utilizzato per effettuare la misura consiste nell’eccitare il trasduttore in trasmissione con un singolo impulso e quindi misurarne il tempo di volo con il trasduttore di ricezione. Il lavoro, oltre alla descrizione dello strumento, mostra alcuni esperimenti condotti su campioni di alluminio e diversi tipi di roccia. Tali esperimenti si sono resi necessari sia per il collaudo dello strumento che per la messa a punto del metodo.
    Description: Published
    Description: 4-16
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: N/A or not JCR
    Description: open
    Keywords: pulse generator, rock physics ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...