ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-04-07
    Description: Germany has a long history in seismic instrumentation. The installation of the first station sites was initiated in those regions with seismic activity. Later on, with an increasing need for seismic hazard assessment, seismological state services were established over the course of several decades, using heterogeneous technology. In parallel, scientific research and international cooperation projects triggered the establishment of institutional and nationwide networks and arrays also focusing on topics other than monitoring local or regional areas, such as recording global seismicity or verification of the compliance with the Comprehensive Nuclear-Test-Ban Treaty. At each of the observatories and data centers, an extensive analysis of the recordings is performed providing high-level data products, for example, earthquake catalogs, as a base for supporting state or federal authorities, to inform the public on topics related to seismology, and for information transfer to international institutions. These data products are usually also accessible at websites of the responsible organizations. The establishment of the European Integrated Data Archive (EIDA) led to a consolidation of existing waveform data exchange mechanisms and their definition as standards in Europe, along with a harmonization of the applied data quality assurance procedures. In Germany, the German Regional Seismic Network as national backbone network and the state networks of Saxony, Saxony-Anhalt, Thuringia, and Bavaria spearheaded the national contributions to EIDA. The benefits of EIDA are attracting additional state and university networks, which are about to join the EIDA community now.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-11-02
    Description: Abstract
    Description: The profile 9N was recorded in 1988 as part of the DEKORP project, the German deep seismic reflection program. The focus of the DEKORP project was on deep crustal and lithospheric structures and therefore originally not on structures at lower depths. From today's perspective, however, this depth range is of great interest for a wide range of possible technical applications (including medium-depth and deep geothermal projects). The original data is published by Stiller et al. (2019). The profile 9N was reprocessed on behalf of the Hessian Agency of Nature Conservation, Environment and Geology (HLNUG). The focus of the reprocessing was on improving the resolution / mapping of geological structures down to a depth of 6 km (approx. 3 s TWT) to describe the prolongation of faults and geological structures in more detail than in previous studies. In order to achieve these goals and in view of the fact that today's processing and evaluation methods have improved considerably compared to the 1990‘s, a state-of-the-art reprocessing was implemented. In comparison with the original processing (Stiller et al. (2019), more sophisticated processing steps like CRS (Common Reflection Surface) instead of CDP (Common Depth Point) stacking, turning-ray tomography and prestack time and depth migration were carried out. The reprocessed DEKORP-9N survey comprises all datasets newly achieved in addition to the datasets from the original processing (Stiller et al. (2019)), i.e. (1) as unstacked data the raw data, the CRS processed data and the migrated image gathers, and (2) as stacked data the pure CRS stack, the poststack-time as well as prestack-time and prestack-depth migrated sections. Moreover, (3) all velocity models used for the different versions including (4) the separate first-break tomography inversion as well as (5) several attribute analyses (RMS amplitude, instantaneous frequency and phase, Q-factor and others) are contained. All reprocessed data come in SEGY trace format, the final sections additionally in PDF graphic format. A reprocessing report is included as well as again all meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment purposes. The DEKORP 9 survey was shot across the Tertiary Upper Rhine Graben, which intersects both the Saxothuringian and Moldanubian regions obliquely. Since the Eocene the Rhine Graben represents an active rift system. The 92 km long, E-W trending DEKORP'88-9N profile crosses the northern part of the Upper Rhine Graben. It starts in the crystalline Odenwald, crosses the Tertiary and Quarternary fill of the Rhine Graben and ends in the late Palaeozoic sequences of the Saar-Nahe Basin in the west. There it crosses the Permian rhyolitic Donnersberg intrusion. The DEKORP'88-9N profile is of particular interest to investigate the seismic resolution of the base of the cenozoic graben fill, the prolongation of faults in the sediments of the Northern Upper Rhine Graben, the transition to the crystalline Odenwald at the eastern border fault, the transition to the Saar-Nahe basin in the west and the transition from the crystalline Odenwald to the Buntsandstein Odenwald in the east of the profile. The additional attribute analyses were carried out to possibly detect previously unknown faults or fracture zones. The seismic sections of 9N show different crustal structures on both sides of the graben and some indications of dipping reflections in the mantle on the western side, which could refer to the genesis of the Upper Rhine Graben. An important new feature is the presence of a Permo-Triassic layer in the Upper Rhine Graben, which is significantly thicker than previously mapped (〉 600 m) and thus the upper edge of the basement is situated over 600 m deeper than in the original data. The reprocessing of the DEKORP'88-9N profile was funded by the HLNUG in cooperation with the Agency for Geology and Mining of the state of Rhineland-Palatinate.
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 - 1997 and funded by the Federal Ministry of Education, Science and Technology (BMFT), now Federal Ministry of Education and Science (BMBF). The data was originally processed in the DEKORP Processing Centre (DPC) at the Institute of Geophysics of the Technical University Clausthal. DEKORP was founded in 1983 with the aim to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence seismic methods. It was closely associated with the deep drilling project KTB (German continental deep-drilling program). One of the main research topics of DEKORP were deep seismic studies to investigate the lithospheric structure beneath Germany. The DEKORP profiles cover approx. 450 km in the state of Hesse and mostly cross areas for which there is only insufficient geological data (i.e. only few deep boreholes). As a governmental agency the HLNUG archives and publishes the data for future applications and usages, such as the search for a repository for nuclear waste in Germany, an expansion of the geophysical database, possibilities for modelling using gravimetric and magnetic data as well as an improvement of the 3D underground model of the state of Hesse. Therefore, the results are directly linked to the new geological 3D model of the state of Hesse, developed by the Technical University of Darmstadt (Hessen3D 2.0 project, BMWi-FKZ: 0325944). The reprocessed DEKORP datasets provide up-to-date unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; deep crustal structures ; crustal-scale seismic survey ; near-vertical incidence seismic reflection ; Vibroseis acquisition ; reprocessing ; CRS processing ; prestack migration ; attribute analyses ; Northern Upper Rhine Graben ; Variscan orogenic belts ; Odenwald ; Saar-Nahe Basin ; rift system ; Mohorovičić discontinuity ; sedimentary graben fill ; geothermal resources ; seismic risks ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-27
    Description: Abstract
    Description: The profile 3A was recorded in 1990 as part of the DEKORP project, the German deep seismic reflection program. The focus of the DEKORP project was on deep crustal and lithospheric structures and therefore originally not on structures at shallower depths. From today's perspective, however, this depth range is of great interest for a wide range of possible technical applications (including medium-depth and deep geothermal projects). The original data is published by Stiller et al. (2021). On behalf of the Hessian Agency of Nature Conservation, Environment and Geology (HLNUG). From the 128 km long profile 3A the southernmost 104 km (plus additional 9 km northwards with decreasing CDP coverage to avoid boundary effects during migration) were reprocessed. As a particularity, also a set of 6 cross-lines, each ca. 9.6 km in length and perpendicular to the main line, were surveyed along DEKORP 3A to get information about possible cross-dips. Five of those short cross-lines (Q12-Q16) were reprocessed in 2D and 3D as well. The focus of reprocessing of the old data was on improving the resolution / mapping of geological structures down to a depth of 6 km (approx. 3 s TWT) to describe the prolongation of faults and geological structures in more detail than in previous studies. In order to achieve these goals and in view of the fact that today's processing and evaluation methods have been improved considerably compared to the 1990‘s, a state-of-the-art reprocessing was implemented. In comparison with the original processing (Stiller et al. (2021)), more sophisticated processing steps like CRS (Common Reflection Surface) instead of CDP (Common Depth Point) stacking, turning-ray tomography and prestack time and depth migration were carried out. The reprocessing results of the DEKORP 3A survey comprise all datasets newly achieved in addition to the datasets from the original processing (Stiller et al. (2021)), i.e. (1) the migrated CRS image gathers as unstacked data, and (2) the pure CRS stack, the poststack-time as well as prestack-time and prestack-depth migrated sections as stacked data. Moreover, (3) all velocity models used for the different versions including (4) the separate first-break tomography inversion, are contained. Additionally, the results of the 2D- and 3D-reprocessing of cross-lines Q12-Q16 are included. All reprocessed data come in SEGY trace format, the final sections additionally in PDF graphic format. A reprocessing report is included as well as again all meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment purposes. Detailed information about acquisition and reprocessing parameters can be found in the accompanying Technical Report (Stiller & Agafonova, 2022). The DEKORP 3 survey was a combined seismic survey investigating the Variscan structures of the Rhenohercynian and the Saxothuringian. Consisting of three seismic lines it starts in the Rhenohercynian Hessian Depression (DEKORP 3A), crosses the Saxothuringian Mid-German Crystalline High (DEKORP 3B/MVE (West)) and runs parallel to the northern margin of the Moldanubian (DEKORP 3B/MVE (East)). The 128 km long DEKORP 3A profile runs N-S within the Hessian Depression from the Solling Dome in the Rhenohercynian to the Vogelsberg Volcano of the Saxothuringian Mid-German Crystalline High. The middle part of the profile crosses the "Northern Phyllite Zone". The reprocessed datasets contain a sub-section of the entire profile with a total length of 104.1 km of full CDP coverage, covering the territory of the state of Hesse. The reprocessed part of 3A is intersected by five short cross-lines along the profile at km 31.75, 53.55, 73.75, 89.85, 109.85 and by DEKORP 3B/MVE (West) at km 120.75 at its southern end. The DEKORP '90-3A profile is of particular interest to investigate the seismic resolution of the crust beneath the Permo-Mesozoic to Tertiary Hessian depression, the Kassel graben structure, as well as the tertiary volcanic fields of the Reinhardswald, Habichtswald, Knüll, Söhrewald and stopping just north of the large Cenozoic Vogelsberg complex.
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 - 1997 and funded by the Federal Ministry of Education, Science and Technology (BMFT), now Federal Ministry of Education and Science (BMBF). The data was originally processed in the DEKORP Processing Centre (DPC) at the Institute of Geophysics of the Technical University Clausthal. DEKORP was founded in 1983 with the aim to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence seismic methods. It was closely associated with the deep drilling project KTB (German continental deep-drilling program). One of the main research topics of DEKORP were deep seismic studies to investigate the lithospheric structure beneath Germany. The DEKORP profiles cover approx. 450 km in the state of Hesse and mostly cross areas for which there is only insufficient geological data (i.e. only few deep boreholes). As a governmental agency the HLNUG archives and publishes the data for future applications and usages, such as the search for a repository for nuclear waste in Germany, an expansion of the geophysical database, possibilities for modelling using gravimetric and magnetic data as well as an improvement of the 3D underground model of the state of Hesse. Therefore, the results are directly linked to the new geological 3D model of the state of Hesse, developed by the Technical University of Darmstadt (Hessen3D 2.0 project, BMWi-FKZ: 0325944). The reprocessed DEKORP datasets provide up-to-date unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: Reprocessing ; CRS ; prestack depth migration ; deep crustal structure ; crustal-scale seismic survey ; near-vertical incidence seismic reflection ; Vibroseis acquisition ; Hessian depression ; Rhenohercynian ; Vogelsberg volcano complex ; Saxothuringian Mid-German Crystalline High ; Northern Phyllite Zone ; Mohorovičić discontinuity ; geothermal resources ; seismic risks ; DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS ; lithosphere 〉 earth's crust
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-28
    Description: Abstract
    Description: The profile 2S was recorded in 1984 as part of the DEKORP project, the German deep seismic reflection program. The focus of the DEKORP project was on deep crustal and lithospheric structures and therefore originally not on structures at shallower depths. From today's perspective, however, this depth range is of great interest for a wide range of possible technical applications (including medium-depth and deep geothermal projects). The original data is published by Stiller et al. (2020). The northernmost 50 km of the 250 km long profile 2S were reprocessed on behalf of the Hessian Agency of Nature Conservation, Environment and Geology (HLNUG). The focus of the reprocessing was on improving the resolution / mapping of geological structures down to a depth of 6 km (approx. 3 s TWT) to describe the prolongation of faults and geological structures in more detail than in previous studies. In order to achieve these goals and in view of the fact that today's processing and evaluation methods have been improved considerably compared to the 1990‘s, a state-of-the-art reprocessing was implemented. In comparison with the original processing (Stiller et al. (2020)), more sophisticated processing steps like CRS (Common Reflection Surface) instead of CDP (Common Depth Point) stacking, turning-ray tomography and prestack time and depth migration were carried out. The reprocessing results of the DEKORP 2S survey comprise all datasets newly achieved in addition to the datasets from the original processing (Stiller et al. (2020)), i.e. (1) the migrated CRS image gathers as unstacked data, and (2) the pure CRS stack, the poststack-time as well as prestack-time and prestack-depth migrated sections as stacked data. Moreover, (3) all velocity models used for the different versions including (4) the separate first-break tomography inversion, are contained. All reprocessed data come in SEGY trace format, the final sections additionally in PDF graphic format. A reprocessing report is included as well as again all meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment purposes. The DEKORP 2 survey, consisting of the three segments 86-2Q, 86-2N and 84-2S, starts in the sub-Variscan foredeep of the Münsterland Basin and ends in the Moldanubian region at the Danube. The central part crosses the Rhenish Massif (Rhenohercynian), the Spessart Mountains of the Mid-German Crystalline High (Saxothuringian) and the meteorite impact location of the "Nördlinger Ries". DEKORP '84-2S, was the first DEKORP line and the only one which mainly used explosives as the seismic source. The 250 km long, SE-NW striking profile extends from the Rhenohercynian Taunus Mountains to the Danube thereby crossing the Spessart Mountains, the Hessian Trough and the "Nördlinger Ries". The profile DEKORP 2S is the southern continuation of DEKORP 2N, which intersects at profile km 246.08. The reprocessed datasets contain a sub-section of the entire 2S profile with a total length of 50 km of full CDP fold, covering the profile’s northern part through the state of Hesse. The DEKORP '84-2S profile is of particular interest to investigate the seismic resolution of the Rhenohercynian Taunus Mountains including the Taunus ridge, as well as the Tertiary Hessian Trough, the Permian Wetterau nappe and a small part of the crystalline Spessart Mountains. The seismic sections of 2S show clearly visible, predominantly SE-dipping reflectors indicating flat-and-ramp tectonics and a differentiation into a highly reflective lower crust and a less reflective upper crust. Due to the use of explosive shots with relatively large spacing as the seismic source, less new information could be achieved for the uppermost crust compared to the original processing and to other DEKORP (vibroseis) surveys. A clear Moho reflection is visible throughout the whole profile section at a depth of ca. 26 to 28 km.
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 - 1997 and funded by the Federal Ministry of Education, Science and Technology (BMFT), now Federal Ministry of Education and Science (BMBF). The data was originally processed in the DEKORP Processing Centre (DPC) at the Institute of Geophysics of the Technical University Clausthal. DEKORP was founded in 1983 with the aim to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence seismic methods. It was closely associated with the deep drilling project KTB (German continental deep-drilling program). One of the main research topics of DEKORP were deep seismic studies to investigate the lithospheric structure beneath Germany. The DEKORP profiles cover approx. 450 km in the state of Hesse and mostly cross areas for which there is only insufficient geological data (i.e. only few deep boreholes). As a governmental agency the HLNUG archives and publishes the data for future applications and usages, such as the search for a repository for nuclear waste in Germany, an expansion of the geophysical database, possibilities for modelling using gravimetric and magnetic data as well as an improvement of the 3D underground model of the state of Hesse. Therefore, the results are directly linked to the new geological 3D model of the state of Hesse, developed by the Technical University of Darmstadt (Hessen3D 2.0 project, BMWi-FKZ: 0325944). The reprocessed DEKORP datasets provide up-to-date unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: Reprocessing ; CRS ; prestack depth migration ; deep crustal structure ; crustal-scale seismic survey ; near-vertical incidence seismic reflection ; explosive seismic sources ; Taunus Mountains ; Variscan orogenic belts ; Spessart Mountains ; Hessian Trough ; Tertiary basins ; Mohorovičić discontinuity ; geothermal resources ; seismic risks ; DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS ; lithosphere 〉 earth's crust
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-28
    Description: Abstract
    Description: The profile 2N was recorded in 1986 as part of the DEKORP project, the German deep seismic reflection program. The focus of the DEKORP project was on deep crustal and lithospheric structures and therefore originally not on structures at shallower depths. From today's perspective, however, this depth range is of great interest for a wide range of possible technical applications (including medium-depth and deep geothermal projects). The original data is published by Stiller et al. (2021). The southernmost 68 km of the 219 km long profile 2N were reprocessed on behalf of the Hessian Agency of Nature Conservation, Environment and Geology (HLNUG). The focus of the reprocessing was on improving the resolution / mapping of geological structures down to a depth of 6 km (approx. 3 s TWT) to describe the prolongation of faults and geological structures in more detail than in previous studies. In order to achieve these goals and in view of the fact that today's processing and evaluation methods have been improved considerably compared to the 1990‘s, a state-of-the-art reprocessing was implemented. In comparison with the original processing (Stiller et al. (2021)), more sophisticated processing steps like CRS (Common Reflection Surface) instead of CDP (Common Depth Point) stacking, turning-ray tomography and prestack time and depth migration were carried out. The reprocessing results of the DEKORP 2N survey comprise all datasets newly achieved in addition to the datasets from the original processing (Stiller et al. (2021)), i.e. (1) the migrated CRS image gathers as unstacked data, and (2) the pure CRS stack, the poststack-time as well as prestack-time and prestack-depth migrated sections as stacked data. Moreover, (3) all velocity models used for the different versions including (4) the separate first-break tomography inversion, are contained. All reprocessed data come in SEGY trace format, the final sections additionally in PDF graphic format. A reprocessing report is included as well as again all meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment purposes. The DEKORP 2 survey, consisting of the three segments 86-2Q, 86-2N and 84-2S, starts in the sub-Variscan foredeep of the Münsterland Basin and ends in the Moldanubian region at the Danube. The central part crosses the Rhenish Massif (Rhenohercynian), the Spessart Mountains of the Mid-German Crystalline High (Saxothuringian) and the meteorite impact location of the "Nördlinger Ries". The 219 km long, SSE-NNW striking DEKORP 2N line provides a cross-section through the Rhenish Massif from the sub-Variscan Münsterland Basin in the north to the Rhenohercynian Taunus Mountains in the south. The profile is the northern continuation of DEKORP 2S, which intersects at profile km 7.72. The reprocessed datasets contain a sub-section of the entire 2N with a total length of 67.84 km of full CDP fold, covering the profile’s southern part through the state of Hesse. The DEKORP '86-2N profile is of particular interest to investigate the seismic resolution of the Rhenish Massif and its different structures, such as the Siegen anticline, the Dill syncline, and the Lahn anticline. In the most southern part, the profile reaches into the Rhenohercynian Taunus Mountains until the Taunus ridge. The seismic sections of 2N show clear, deep reaching reflections along the prolongation of the whole profile supporting newer theories of nappe structures in the hessian part of the Rhenish Massif. The reflections are more clearly visible than in the original processing. All visible structures are mainly SE-dipping reflections in the upper crust, which represent lithologic contrasts as well as thrust faults known from surface geology. In the lower crust highly reflective predominantly SE-dipping reflectors can be identified. Moho reflections are clearly identifiable and deepening to the NW.
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 - 1997 and funded by the Federal Ministry of Education, Science and Technology (BMFT), now Federal Ministry of Education and Science (BMBF). The data was originally processed in the DEKORP Processing Centre (DPC) at the Institute of Geophysics of the Technical University Clausthal. DEKORP was founded in 1983 with the aim to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence seismic methods. It was closely associated with the deep drilling project KTB (German continental deep-drilling program). One of the main research topics of DEKORP were deep seismic studies to investigate the lithospheric structure beneath Germany. The DEKORP profiles cover approx. 450 km in the state of Hesse and mostly cross areas for which there is only insufficient geological data (i.e. only few deep boreholes). As a governmental agency the HLNUG archives and publishes the data for future applications and usages, such as the search for a repository for nuclear waste in Germany, an expansion of the geophysical database, possibilities for modelling using gravimetric and magnetic data as well as an improvement of the 3D underground model of the state of Hesse. Therefore, the results are directly linked to the new geological 3D model of the state of Hesse, developed by the Technical University of Darmstadt (Hessen3D 2.0 project, BMWi-FKZ: 0325944). The reprocessed DEKORP datasets provide up-to-date unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: Reprocessing ; CRS ; prestack depth migration ; deep crustal structure ; crustal-scale seismic survey ; near-vertical incidence seismic reflection ; Vibroseis acquisition ; Rhenish Massif ; Variscan orogenic belts ; Taunus ; Mohorovičić discontinuity ; geothermal resources ; seismic risks ; DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS ; lithosphere 〉 earth's crust
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-12
    Description: Abstract
    Description: The profile DEKORP 3B/MVE, consisting of the two segments West and East, was recorded in 1990 as part of the DEKORP project, the German deep seismic reflection program. The focus of the DEKORP project was on deep crustal and lithospheric structures and therefore originally not on structures at shallower depths. From today's perspective, however, this depth range is of great interest for a wide range of possible technical applications (including medium-depth and deep geothermal projects). The original data is published by Stiller et al. (2021). The westernmost 91 km of the 208 km long profile 3B (West) were reprocessed on behalf of the Hessian Agency of Nature Conservation, Environment and Geology (HLNUG). As a particularity, also a set of 18 cross-lines, each ca. 12 km in length and perpendicular to the main lines, were surveyed along DEKORP 3B/MVE to get information about possible cross-dips. Four of those short cross-lines were reprocessed in 2D as well. The focus of the reprocessing of the old data was on improving the resolution / mapping of geological structures down to a depth of 6 km (approx. 3 s TWT) to describe the prolongation of faults and geological structures in more detail than in previous studies. In order to achieve these goals and in view of the fact that today's processing and evaluation methods have been improved considerably compared to the 1990‘s, a state-of-the-art reprocessing was implemented. In comparison with the original processing (Stiller et al. (2021)), more sophisticated processing steps like CRS (Common Reflection Surface) instead of CDP (Common Depth Point) stacking, turning-ray tomography and prestack time and depth migration were carried out. The reprocessing results of the DEKORP 3B (West) survey comprise all datasets newly achieved in addition to the datasets from the original processing (Stiller et al. (2021)), i.e. (1) the migrated CRS image gathers as unstacked data, and (2) the pure CRS stack, the poststack-time as well as prestack-time and prestack-depth migrated sections as stacked data. Moreover, (3) all velocity models used for the different versions including (4) the separate first-break tomography inversion, are contained. Additionally, the results of the 2D-reprocessing of cross-lines Q21-Q24 are included. All reprocessed data come in SEGY trace format, the final sections additionally in PDF graphic format. A reprocessing report is included as well as again all meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment purposes. The DEKORP 3 survey was a combined seismic survey investigating the Variscan structures of the Rhenohercynian and the Saxothuringian. Consisting of three seismic lines it starts in the Rhenohercynian Hessian Depression (DEKORP 3A), crosses the Saxothuringian Mid-German Crystalline High (DEKORP 3B/MVE (West)) and runs parallel to the northern margin of the Moldanubian (DEKORP 3B/MVE (East)). The 207.65 km long DEKORP 3B (West) profile trends NW-SE and intersects DEKORP 3A in the Tertiary volcanic field within the "Northern Phyllite Zone". It crosses the Hessian Depression of the Rhenohercynian, runs through the Rhön Tertiary volcanic province and the Mesozoic Franconian Basin to the Bohemian Massif. The line ends at the Franconian Line. The reprocessed datasets contain a sub-section of the entire 3B (West) profile with a total length of 90.8 km of full CDP coverage, covering the territory of the state of Hesse, i. e. from the profile’s starting point in the NW to the SE until the Rhön volcanic complex. The reprocessed part of 3B (West) is intersected by four short cross-lines along the profile at km 8.75, 32.6, 64.75, 84.35 and by DEKORP 3A at km 42.3. The DEKORP '90-3B profile is of particular interest to investigate the seismic resolution of the Hessian depression, the east-hessian Buntsandstein nappe as well as the tertiary volcanic fields of the Kellerwald and Rhön.
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 - 1997 and funded by the Federal Ministry of Education, Science and Technology (BMFT), now Federal Ministry of Education and Science (BMBF). The data was originally processed in the DEKORP Processing Centre (DPC) at the Institute of Geophysics of the Technical University Clausthal. DEKORP was founded in 1983 with the aim to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence seismic methods. It was closely associated with the deep drilling project KTB (German continental deep-drilling program). One of the main research topics of DEKORP were deep seismic studies to investigate the lithospheric structure beneath Germany. The DEKORP profiles cover approx. 450 km in the state of Hesse and mostly cross areas for which there is only insufficient geological data (i.e. only few deep boreholes). As a governmental agency the HLNUG archives and publishes the data for future applications and usages, such as the search for a repository for nuclear waste in Germany, an expansion of the geophysical database, possibilities for modelling using gravimetric and magnetic data as well as an improvement of the 3D underground model of the state of Hesse. Therefore, the results are directly linked to the new geological 3D model of the state of Hesse, developed by the Technical University of Darmstadt (Hessen3D 2.0 project, BMWi-FKZ: 0325944). The reprocessed DEKORP datasets provide up-to-date unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: Reprocessing ; CRS ; prestack depth migration ; deep crustal structure ; crustal-scale seismic survey ; near-vertical incidence seismic reflection ; Vibroseis acquisition ; Hessian depression ; Rhenohercynian ; Buntsandstein ; Saxothuringian Mid-German Crystalline High ; Northern Phyllite Zone ; Mohorovičić discontinuity ; geothermal resources ; seismic risks ; DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS ; lithosphere 〉 earth's crust
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-04-03
    Description: Digitale Gelände-Modelle (DGM) erstellt aus Laserscan-Daten und Daten der Persistent Scatterer Interferometrie (PSI) bieten Datengrundlagen zur Analyse von großflächigen Bodenbewegungen im cm- und mm-Bereich. Es besteht ein Bedarf an geeigneten Verarbeitungs- und Interpretationswerkzeugen für diese Datenquellen, um sie der breiten Öffentlichkeit zur Nutzung zur Verfügung zu stellen. Die dafür notwendigen Arbeiten werden innerhalb des Umwelt 4.0 – Projektes, Cluster I – „Nutzung digitaler Geländemodelle und Copernicus-Daten“, durchgeführt, welches vom Hessischen Landesamt für Naturschutz, Umwelt und Geologie in Kooperation mit der TU Darmstadt durchgeführt und von der Hessischen Ministerin für Digitale Strategie und Entwicklung gefördert wird. Um automatisch Bewegungs-Hot-Spots in Hessen zu detektieren, werden mittels eines erstellten GIS-Tools Gebiete, die detektierbare Setzungen (Geschwindigkeit 〈 - 2 mm/a) oder Hebungen (Geschwindigkeit 〉 2 mm/a) aufweisen und in denen möglichst viele Persistent Scatterer Bewegungsgeschwindigkeiten aufweisen, ermittelt. Je stärker eine Bodenbewegung ist und je mehr Persistent Scatterer diese Bodenbewegung anzeigen, desto stärker wird dieser Bereich hervorgehoben. Zur Analyse der Bewegungsursachen werden die Zeitreihen mittels Fitting untersucht und des Weiteren mit möglichen Bewegungsursachen der Region verglichen. Um die räumlichen Lücken der Persistent Scatterer Daten in unbebauten Regionen zu füllen, wird an zwei unterschiedlichen Lösungen gearbeitet. Zum einen werden Differenzenkarten aus Digitalen Geländemodellen, die zu unterschiedlichen Zeitpunkten aufgenommen wurden, erstellt. Zum anderen soll das Small Baseline Subset (SBAS)-Verfahren Anwendung finden. Der hier beschriebene Workflow liefert verschiedene Bewegungs-Hot-Spots in Hessen. Anhand von Fallbeispielen werden erste Ergebnisse des Projektes vorgestellt. Die räumliche Fusion der PSI-Daten mit Differenzenkarten und SBAS-Daten ist im weiteren Projektverlauf vorgesehen.
    Description: Hessische Ministerin für Digitale Strategie und Entwicklung
    Description: poster
    Keywords: Fernerkundung ; Sentinel-1 ; Radarinterferometrie ; Laserscan ; Bodenbewegung ; Hessen
    Language: German
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-12-01
    Description: As part of the German continental seismic reflection program (Deutsches Kontinentales Reflexionsseismisches Programm, DEKORP), three large seismic traverses (with the sub-profiles: DEKORP'84-2S and '86-2N; DEKORP'88-9N; DEKORP'90-3A and '90-3B) were measured in the state of Hesse in Germany. The main research topic of DEKORP were deep seismic studies to investigate the lithospheric structure beneath Germany. Thus, for acquisition, strong sources were used to image in these depths, resulting in an excellent S/N ratio, but the main focus was not on the uppermost kilometres. From today's perspective, however, this depth range is of great interest for a wide range of possible technical applications (including medium-deep and deep geothermal projects). The DEKORP profiles cover approx. 450 km in the state of Hesse and mostly cross areas where only insufficient geological data exist (i.e. only few deep boreholes). In order to close or reduce these knowledge gaps, these DEKORP lines were reprocessed in 2019/20. The focus of the reprocessing was on improving the resolution / mapping of geological structures down to a depth of 6 km (approx. 3 s TWT) to describe the prolongation of faults and geological structures in more detail than in previous studies. Nevertheless, deeper structures were also reinterpreted and compared to previous interpretations. The results were directly incorporated into the new geological 3D model of the state of Hesse, developed by the Technical University of Darmstadt (Hessen3D 2.0, BMWi-FKZ: 0325944). In order to achieve these goals and in view of the fact that today's processing methods have improved considerably compared to the 1990‘s, a state-of-the-art reprocessing was applied for all DEKORP profiles traversing the state of Hesse. In comparison to the original processing, additional processing steps like CRS instead of CDP stacking, turning-ray tomography and prestack depth migration were carried out. We present exemplary results of the reprocessing as well as initial geological reinterpretations for the profile DEKORP'88-9N.
    Description: poster
    Keywords: ddc:550 ; DEKORP ; Reprocessing of 2D seismic profiles ; Hesse ; Upper Rhine Graben ; DEKORP'88-9N
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-12-01
    Description: Der Hessische Erdbebenkatalog ist eine Zusammenstellung historischer und aktueller Informationen zu Erdbeben in Hessen und direkter Umgebung von Hessen. Er wird vom Hessischen Erdbebendienst geführt und regelmäßig aktualisiert. Eine 50 km-Umhüllende wurde um Hessen herum gelegt, um auch Erdbeben und die dazugehörenden Bereiche zu betrachten, die Auswirkungen auf Hessen haben können. Eine Vollständigkeit wird jedoch nur für das Gebiet des Landes Hessen angestrebt. Für den seismischen Katalog Hessen (SKHe2022) wurden verschiedene, verfügbare Erdbebenkataloge und Ausarbeitungen zu Grunde gelegt. Des Weiteren beinhaltet der Katalog Ereignisse aus mehreren wissenschaftlichen Publikationen. Das Stichdatum für den Katalog ist der 31.12.2021. Der Erdbebenkatalog Hessen wird auch in Zukunft fortgeschrieben und ist damit als Zwischenstand zu sehen. In Zukunft wird er halbjährig aktualisiert und der Öffentlichkeit über den Geologie-Viewer des Hessischen Landesamtes für Naturschutz, Umwelt und Geologie unter geologie.hessen.de zur Verfügung gestellt. Im seismischen Katalog Hessen werden fünf Zeiträume beschrieben. Dabei handelt es sich für den Zeitraum 800 bis 1700 um Daten, die aus Chroniken ermittelt wurden. Für den Zeitraum 1701 bis 1950 beruhen viele der älteren Ereignisse auf makroseismischen Daten. Durch den aufkommenden Zeitungsdruck wurden wesentlich mehr Daten erhoben als in dem Zeitraum davor. Seit Anfang des 20. Jahrhunderts wurden dann auch Erdbeben instrumentell aufgezeichnet. Das analog-instrumentelle Zeitalter wird für den Zeitraum 1951 bis 1975 angegeben. Das digital-instrumentelle Zeitalter gilt ab 1976. Es wurde eine Priorisierung der einzelnen Erdbebenereignisse, wenn mehrere Ereignisse von unterschiedlichen Quellen aufgezeichnet wurden, durchgeführt. In der aktuellen Version sind sämtliche bekannte induzierte Ereignisse identifiziert worden. In der veröffentlichten Version sind diese induzierten Ereignisse nicht mehr enthalten, so dass der Erdbebenkatalog des Landes Hessen als rein tektonischer, auf natürlichen Erdbeben basierender, Erdbebenkatalog angesehen werden kann. Die stärksten historischen Erdbeben traten in den Jahren 858, 1733 und 1858 in Mainz, 1619 im südlichen Taunus, 1767 in Rothenburg/Fulda, sowie als Erdbebenschwarm in Groß-Gerau (1869-1871), 1871 in Lorsch und im Odenwald auf. Das stärkste Erdbeben in den letzten Jahren fand im Jahr 2014 bei Ober-Ramstadt im Odenwald mit einer Magnitude von 4,2 statt.
    Description: poster
    Keywords: ddc:550 ; Erdbeben ; Seismischer Katalog ; Hessen ; Oberrheingraben
    Language: German
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...