ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-09
    Description: Climate change and variability are major societal challenges, and the ocean is an integral part of this complex and variable system. Key to the understanding of the ocean�s role in the Earth�s climate system is the study of ocean and sea-ice physical processes, including its interactions with the atmosphere, cryosphere, land, and biosphere. These processes include those linked to ocean circulation; the storage and redistribution of heat, carbon, salt and other water properties; and air-sea exchanges of heat, momentum, freshwater, carbon, and other gasses. Measurements of ocean physics variables are fundamental to reliable earth prediction systems for a range of applications and users. In addition, knowledge of the physical environment is fundamental to growing understanding of the ocean�s biogeochemistry and biological/ecosystem variability and function. Through the progress from OceanObs�99 to OceanObs�09, the ocean observing system has evolved from a platform centric perspective to an integrated observing system. The challenge now is for the observing system to evolve to respond to an increasingly diverse end user group. The Ocean Observations Physics and Climate panel (OOPC), formed in 1995, has undertaken many activities that led to observing system-related agreements. Here, OOPC will explore the opportunities and challenges for the development of a fit-for-purpose, sustained and prioritized ocean observing system, focusing on physical variables that maximize support for fundamental research, climate monitoring, forecasting on different timescales, and society. OOPC recommendations are guided by the Framework for Ocean Observing which emphasizes identifying user requirements by considering time and space scales of the Essential Ocean Variables. This approach provides a framework for reviewing the adequacy of the observing system, looking for synergies in delivering an integrated observing system for a range of applications and focusing innovation in areas where existing technologies do not meet these requirements.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-13
    Description: This white paper provides an outline of the concept of digital twins of the ocean and lays out the challenges, opportunities for action, and suggestions for their implementation as defined by the UN Decade Action “Digital Twins of the Ocean” (DITTO).
    Description: Published
    Description: Refereed
    Keywords: DTO ; Digital Twin of the Ocean ; Digital Twins of the Ocean (DITTO)
    Repository Name: AquaDocs
    Type: Report
    Format: 23pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sloyan, B. M., Wilkin, J., Hill, K. L., Chidichimo, M. P., Cronin, M. F., Johannessen, J. A., Karstensen, J., Krug, M., Lee, T., Oka, E., Palmer, M. D., Rabe, B., Speich, S., von Schuckmann, K., Weller, R. A., & Yu, W. Evolving the physical global ocean observing system for research and application services through international coordination. Frontiers in Marine Science, 6, (2019): 449, doi:10.3389/fmars.2019.00449.
    Description: Climate change and variability are major societal challenges, and the ocean is an integral part of this complex and variable system. Key to the understanding of the ocean’s role in the Earth’s climate system is the study of ocean and sea-ice physical processes, including its interactions with the atmosphere, cryosphere, land, and biosphere. These processes include those linked to ocean circulation; the storage and redistribution of heat, carbon, salt and other water properties; and air-sea exchanges of heat, momentum, freshwater, carbon, and other gasses. Measurements of ocean physics variables are fundamental to reliable earth prediction systems for a range of applications and users. In addition, knowledge of the physical environment is fundamental to growing understanding of the ocean’s biogeochemistry and biological/ecosystem variability and function. Through the progress from OceanObs’99 to OceanObs’09, the ocean observing system has evolved from a platform centric perspective to an integrated observing system. The challenge now is for the observing system to evolve to respond to an increasingly diverse end user group. The Ocean Observations Physics and Climate panel (OOPC), formed in 1995, has undertaken many activities that led to observing system-related agreements. Here, OOPC will explore the opportunities and challenges for the development of a fit-for-purpose, sustained and prioritized ocean observing system, focusing on physical variables that maximize support for fundamental research, climate monitoring, forecasting on different timescales, and society. OOPC recommendations are guided by the Framework for Ocean Observing which emphasizes identifying user requirements by considering time and space scales of the Essential Ocean Variables. This approach provides a framework for reviewing the adequacy of the observing system, looking for synergies in delivering an integrated observing system for a range of applications and focusing innovation in areas where existing technologies do not meet these requirements.
    Description: BS received support from the Centre for Southern Hemisphere Oceans Research, a collaboration between the CSIRO and the Qingdao National Laboratory for Marine Science and Technology and the Australian Government Department of the Environment and CSIRO through the Australian Climate Change Science Programme and by the National Environmental Science Program. JK was supported by the European Union’s Horizon 2020 Research and Innovation Programme under the grant agreement no. 633211 (AtlantOS). MP was supported by the Met Office Hadley Centre Climate Programme funded by the BEIS and Defra. SS was supported by the Ecole Normale Supérieure, CNRS, and Ifremer funded by the European Union’s Horizon 2020 Research and Innovation Programme under the grant agreement no. 633211 (AtlantOS), CNES, and ANR grants.
    Keywords: Observing system evaluation ; Observing system design ; Sustained observations ; Observing networks ; Observation platforms ; Climate ; Weather ; Operational services
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Testor, P., de Young, B., Rudnick, D. L., Glenn, S., Hayes, D., Lee, C. M., Pattiaratchi, C., Hill, K., Heslop, E., Turpin, V., Alenius, P., Barrera, C., Barth, J. A., Beaird, N., Becu, G., Bosse, A., Bourrin, F., Brearley, J. A., Chao, Y., Chen, S., Chiggiato, J., Coppola, L., Crout, R., Cummings, J., Curry, B., Curry, R., Davis, R., Desai, K., DiMarco, S., Edwards, C., Fielding, S., Fer, I., Frajka-Williams, E., Gildor, H., Goni, G., Gutierrez, D., Haugan, P., Hebert, D., Heiderich, J., Henson, S., Heywood, K., Hogan, P., Houpert, L., Huh, S., Inall, M. E., Ishii, M., Ito, S., Itoh, S., Jan, S., Kaiser, J., Karstensen, J., Kirkpatrick, B., Klymak, J., Kohut, J., Krahmann, G., Krug, M., McClatchie, S., Marin, F., Mauri, E., Mehra, A., Meredith, M. P., Meunier, T., Miles, T., Morell, J. M., Mortier, L., Nicholson, S., O'Callaghan, J., O'Conchubhair, D., Oke, P., Pallas-Sanz, E., Palmer, M., Park, J., Perivoliotis, L., Poulain, P., Perry, R., Queste, B., Rainville, L., Rehm, E., Roughan, M., Rome, N., Ross, T., Ruiz, S., Saba, G., Schaeffer, A., Schonau, M., Schroeder, K., Shimizu, Y., Sloyan, B. M., Smeed, D., Snowden, D., Song, Y., Swart, S., Tenreiro, M., Thompson, A., Tintore, J., Todd, R. E., Toro, C., Venables, H., Wagawa, T., Waterman, S., Watlington, R. A., & Wilson, D. OceanGliders: A component of the integrated GOOS. Frontiers in Marine Science, 6, (2019): 422, doi:10.3389/fmars.2019.00422.
    Description: The OceanGliders program started in 2016 to support active coordination and enhancement of global glider activity. OceanGliders contributes to the international efforts of the Global Ocean Observation System (GOOS) for Climate, Ocean Health, and Operational Services. It brings together marine scientists and engineers operating gliders around the world: (1) to observe the long-term physical, biogeochemical, and biological ocean processes and phenomena that are relevant for societal applications; and, (2) to contribute to the GOOS through real-time and delayed mode data dissemination. The OceanGliders program is distributed across national and regional observing systems and significantly contributes to integrated, multi-scale and multi-platform sampling strategies. OceanGliders shares best practices, requirements, and scientific knowledge needed for glider operations, data collection and analysis. It also monitors global glider activity and supports the dissemination of glider data through regional and global databases, in real-time and delayed modes, facilitating data access to the wider community. OceanGliders currently supports national, regional and global initiatives to maintain and expand the capabilities and application of gliders to meet key global challenges such as improved measurement of ocean boundary currents, water transformation and storm forecast.
    Description: The editorial team would like to recognize the support of the global glider community to this paper. Our requests for data and information were met with enthusiasm and welcome contributions from around the globe, clearly demonstrating to us a point made in this paper that there are many active and dedicated teams of glider operators and users. We should also acknowledge the support that OceanGliders has received from the WMO/IOC JCOMM-OCG and JCOMMOPS that have allowed this program to develop, encouraging us to articulate a vision for the role of gliders in the GOOS. We acknowledge support from the EU Horizon 2020 AtlantOS project funded under grant agreement No. 633211 and gratefully acknowledge the many agencies and programs that have supported underwater gliders: AlterEco, ANR, CFI, CIGOM, CLASS Ellet Array, CNES, CNRS/INSU, CONACyT, CSIRO, DEFRA, DFG/SFB-754, DFO, DGA, DSTL, ERC, FCO, FP7, and H2020 Europen Commission, HIMIOFoTS, Ifremer, IMOS, IMS, IOOS, IPEV, IRD, Israel MOST, JSPS, MEOPAR, NASA, NAVOCEANO (Navy), NERC, NFR, NJDEP, NOAA, NRC, NRL, NSF, NSERC, ONR, OSNAP, Taiwan MOST, SANAP-NRF, SENER, SIMS, Shell Exploration and Production Company, Sorbonne Université, SSB, UKRI, UNSW, Vettleson, Wallenberg Academy Fellowship, and WWF.
    Keywords: In situ ocean observing systems ; Gliders ; Boundary currents ; Storms ; Water transformation ; Ocean data management ; Autonomous oceanic platforms ; GOOS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Smith, N., Kessler, W. S., Cravatte, S., Sprintall, J., Wijffels, S., Cronin, M. F., Sutton, A., Serra, Y. L., Dewitte, B., Strutton, P. G., Hill, K., Sen Gupta, A., Lin, X., Takahashi, K., Chen, D., & Brunner, S. Tropical pacific observing system. Frontiers in Marine Science, 6, (2019):31, doi:10.3389/fmars.2019.00031.
    Description: This paper reviews the design of the Tropical Pacific Observing System (TPOS) and its governance and takes a forward look at prospective change. The initial findings of the TPOS 2020 Project embrace new strategic approaches and technologies in a user-driven design and the variable focus of the Framework for Ocean Observing. User requirements arise from climate prediction and research, climate change and the climate record, and coupled modeling and data assimilation more generally. Requirements include focus on the upper ocean and air-sea interactions, sampling of diurnal variations, finer spatial scales and emerging demands related to biogeochemistry and ecosystems. One aim is to sample a diversity of climatic regimes in addition to the equatorial zone. The status and outlook for meeting the requirements of the design are discussed. This is accomplished through integrated and complementary capabilities of networks, including satellites, moorings, profiling floats and autonomous vehicles. Emerging technologies and methods are also discussed. The outlook highlights a few new foci of the design: biogeochemistry and ecosystems, low-latitude western boundary currents and the eastern Pacific. Low latitude western boundary currents are conduits of tropical-subtropical interactions, supplying waters of mid to high latitude origin to the western equatorial Pacific and into the Indonesian Throughflow. They are an essential part of the recharge/discharge of equatorial warm water volume at interannual timescales and play crucial roles in climate variability on regional and global scales. The tropical eastern Pacific, where extreme El Niño events develop, requires tailored approaches owing to the complex of processes at work there involving coastal upwelling, and equatorial cold tongue dynamics, the oxygen minimum zone and the seasonal double Intertropical Convergence Zone. A pilot program building on existing networks is envisaged, complemented by a process study of the East Pacific ITCZ/warm pool/cold tongue/stratus coupled system. The sustainability of TPOS depends on effective and strong collaborative partnerships and governance arrangements. Revisiting regional mechanisms and engaging new partners in the context of a planned and systematic design will ensure a multi-purpose, multi-faceted integrated approach that is sustainable and responsive to changing needs.
    Description: BD thanks LEFE-GMMC for financial support. JS participation in this study was supported by NOAA’s Global Ocean Monitoring and Observing Program through Award NA15OAR4320071. NOAA’s Ocean Observing and Monitoring Division has supported NS and WK and the TPOS 2020 Distributed Project Office.
    Keywords: Ocean observing ; Tropical Pacific ; TPOS 2020 ; User requirements ; Variable requirements ; Design ; Tropical moorings
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Palmer, M. D., Durack, P. J., Paz Chidichimo, M., Church, J. A., Cravatte, S., Hill, K., Johannessen, J. A., Karstensen, J., Lee, T., Legler, D., Mazloff, M., Oka, E., Purkey, S., Rabe, B., Sallee, J., Sloyan, B. M., Speich, S., von Schuckmann, K., Willis, J., & Wijffels, S. Adequacy of the ocean observation system for quantifying regional heat and freshwater storage and change. Frontiers in Marine Science, 6, (2019): 16, doi: 10.3389/fmars.2019.00416.
    Description: Considerable advances in the global ocean observing system over the last two decades offers an opportunity to provide more quantitative information on changes in heat and freshwater storage. Variations in these storage terms can arise through internal variability and also the response of the ocean to anthropogenic climate change. Disentangling these competing influences on the regional patterns of change and elucidating their governing processes remains an outstanding scientific challenge. This challenge is compounded by instrumental and sampling uncertainties. The combined use of ocean observations and model simulations is the most viable method to assess the forced signal from noise and ascertain the primary drivers of variability and change. Moreover, this approach offers the potential for improved seasonal-to-decadal predictions and the possibility to develop powerful multi-variate constraints on climate model future projections. Regional heat storage changes dominate the steric contribution to sea level rise over most of the ocean and are vital to understanding both global and regional heat budgets. Variations in regional freshwater storage are particularly relevant to our understanding of changes in the hydrological cycle and can potentially be used to verify local ocean mass addition from terrestrial and cryospheric systems associated with contemporary sea level rise. This White Paper will examine the ability of the current ocean observing system to quantify changes in regional heat and freshwater storage. In particular we will seek to answer the question: What time and space scales are currently resolved in different regions of the global oceans? In light of some of the key scientific questions, we will discuss the requirements for measurement accuracy, sampling, and coverage as well as the synergies that can be leveraged by more comprehensively analyzing the multi-variable arrays provided by the integrated observing system.
    Description: MP was supported by the Met Office Hadley Centre Climate Programme funded by the BEIS and Defra, and the European Union’s Horizon 2020 Research and Innovation Program under grant Agreement No. 633211 (AtlantOS). The work of PD was prepared the by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and is a contribution to the U.S. Department of Energy, Office of Science, Climate and Environmental Sciences Division, Regional and Global Modeling and Analysis Program. LLNL Release number: LLNL-JRNL-761158. BS and JC was partially supported by the Centre for Southern Hemisphere Oceans Research, a joint research center between the QNLM and the CSIRO. BS was also supported by the Australian Government Department of the Environment and CSIRO through the National Environmental Science Program. SC was supported by the IRD and by the French national program LEFE/INSU. SC thanks W. Kessler for suggestions concerning Figure 6. BR was supported by the German Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung (AWI). J-BS was supported by the CNRS/INSU and the Horizon 2020 Research and Innovation Program under Grant Agreement 637770. SS was supported by the French Institutions ENS, LMD, IPSL, and CNRS/INSU. The work of JW was performed in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
    Keywords: Heat content ; Freshwater content ; Salinity ; Temperature ; Ocean observing system ; Climate change ; Climate variability ; Observing system design
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-12-15
    Description: Journal of the American Chemical Society DOI: 10.1021/jacs.7b11962
    Print ISSN: 0002-7863
    Electronic ISSN: 1520-5126
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-11-16
    Description: The field of vascular regenerative medicine is rapidly growing and the demand for cell-based therapy is high. In our studies, human embryonic stem cells (hESCs) were differentiated via coculture with M2-10B4 mouse bone marrow derived stromal cells for 13–15 days. At this time, CD34+ were isolated using an immunomagnetic separation technique and further phenotyped. As shown by flow cytometric analysis, the population co-expressed typical endothelial cell surface antigens such as CD31 and Flk. Upon culture of these CD34+ cells in endothelial culture medium containing VEGF, bFGF, IGF-1, EGF, and heparin, the cells assumed a endothelial cell morphology, formed vascular like networks when placed in Matrigel, and expressed CD31, Flk1, CD146, Tie2, eNOS, vWF, and VE-cadherin (each confirmed by quantitative real time PCR, immunohistochemistry, and flow cytometry). Transmission electron micrograph images of these cells, termed hESC-ECs, showed a defined cortical filamentous rim as seen in other endothelial cells and a significant number of micro-particles being released from the cell surface. Additionally, permeability studies revealed these cells exhibit trans-electrical resistance of 1200Ω, consistent with basal barrier properties exhibited by conduit endothelial cells. These hESC-ECs also proved capable of further differentiation into smooth muscle cells, hESCSMCs. When culture conditions were changed to support SMC growth (DMEM + PDGFBB and TGF-β1), cells assumed SMC morphology including intracellular fibrils, down regulated endothelial gene transcript and protein expression, and began to express α-SMC actin, calponin, SM22, smoothelin, myocardin. Also, concomitant increases in expression of APEG-1 and CRP2/SmLIM, expressed preferentially by arterial SMCs, was found. In contrast, HUVECs placed under these SMC conditions did not display SMC characteristics. Additional studies evaluated intracellular calcium release in hESC-ECs and hESC-SMCs subjected to various pharmacological agonists. The hESC-SMC population preferentially responded to bradykinin, oxytocin, endothelin-1, histamine, and ATP, while hESC-ECs responsed to endothelin-1, histamine, bradykinin, and carbachol. Functional studies were initially done by in vitro culture of these cell populations in Matrigel. hESC-SMCs placed in Matrigel alone did not form a vascular like network. However, an improved vascular structure was seen when hESC-ECs were placed in Matrigel along with hESC-SMCs. Together, these cells formed a dense, more robust vascular network composed of thicker tube structures, indicating a more physiologically relevant model of vasculogenesis. Next in vivo studies have been initiated utilizing a mouse myocardial infarct model. NOD/SCID mice were anesthetized and subjected to ligation of the left anterior descending artery. By assessing cardiac function 3 weeks post infarction, we found that mice receiving an hESC-EC injection (1×106 cells directly into infarction sight) showed greater vascular repair and increased ejection fraction when compared to mice that did not receive an hESCEC injection [untreated control ejection fraction= 14.3% vs hESC-EC treated= 21.3%]. Currently, studies are underway evaluating combined use of hESC-ECs and hESC-SMCs in this infarct model, as we hypothesize that combined use of these cells will be more beneficial for vascular development and repair than either one population alone. Together, the phenotypic and functional studies of these hESC-derived CD34+ cells suggest these cells can act as pericytes with dual endothelial cell and SMC developmental potential and these hESC-derived pericytes can provide an important resource for developing novel cellular therapies for vascular repair.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-23
    Electronic ISSN: 2515-5172
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-11-20
    Description: Abstract 2517 Poster Board II-494 Osteoclasts are bone resorbing cells located in the bone marrow that play a key role in hematopoiesis and formation of the hematopoietic niche. Previous studies demonstrate osteoclasts arise from the monocyte-macrophage lineage of cells within the bone marrow microenvironment. Osteoclast progenitor cells typically express the monocyte marker CD14, though relatively little is known about the developmental history of these osteoclastogeneic cells in humans. Osteoclast progenitors have been previously isolated from peripheral blood and bone marrow. Previous studies by our group and others demonstrate human embryonic stem cells (hESCs) can differentiate into CD34+CD45+ cells that can be supported to differentiate into many types of hematopoietic cells, though development of osteoclasts have not been previously demonstrated. To better evaluate osteoclastogenesis, hESCs were allowed to differentiate on M210 stromal cells for 19–21 days then sorted for CD34+CD45+ cells. These cells were placed into a secondary co-culture with M210 stromal cells using osteoclast differentiation factors macrophage colony-stimulating factor (hM-CSF) and receptor activator of nuclear factor–kB ligand (hRANKL) for 14–21 days. During this time, mononuclear hematopoietic cells expanded on top of the stromal cells, followed by appearance of multinucleated cells that became adherent and embedded within the stromal cell layer. These adherent multi-nucleated cells were TRAP-positive, consistent with osteoclasts. Q-RT-PCR analysis demonstrated expression of osteoclast genes NFATC1, TRAP, CATHEPSIN K AND MMP-9. Culturing these putative osteoclasts on dentin discs demonstrated dentin resorption and pit formation, consistent with osteoclasts cultured from peripheral blood. No pit formation observed when the same experiments were done without hRANKL and hMCSF. Most remarkable was the extensive proliferation of CD45+CD33+ myeloid cells around the periphery of the adherent, multinucleated osteoclasts in culture, resembling a multi-cellular hematopoietic niche environment. Further studies are underway to better evaluate the interaction of these osteoclast cells with other hESC-derived hematopoietic cells. Together, these studies demonstrate development of functional osteoclasts directly from hESC-derived CD34+CD45+ hematopoietic progenitor population. We also show development of a novel in vitro HSC niche microenvironment utilizing hESC-derived osteoclasts. This system has the potential to now incorporate other hESC-derived cell populations as a model to better define cellular and extracellular mechanisms that mediate human hematopoietic development. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...