ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 66 (1995), S. 4655-4664 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We present the layout and technical details of a trace gas monitor based on photothermal deflection. The operating principle of this instrument, i.e., the deflection of a (weak) probe laser beam by the thermal refractive index gradient induced by trace gas absorption of an intense pump laser beam, allows nonintrusive measurements with good space and time resolution. An intra-cavity CO2 laser is used as the pump beam and a red HeNe laser as the probe. The latter runs perpendicular to the pump beam to optimize spatial resolution. To increase sensitivity, the probe laser is incorporated in a multipass setup. The instrument is demonstrated by the localization of ethylene emission sites on a cherry tomato and by monitoring ammonia production due to nitrogen fixation by cyanobacteria. Both C2H4 and NH3 can be detected at the 1–3 ppb level, at a spatial resolution of 2 mm (along the pump laser)×0.6 mm (perpendicular to it), and a response time of 0.1 s (without background correction) or 15 s (including background correction). Sensitivity can be increased at the expense of spatial resolution, and vice versa. In principle, this instrument is applicable to all those gases possessing a characteristic ("fingerprint'') spectrum in the CO2 laser range. The great advantage of the photothermal deflection technique with respect to other trace gas detection schemes lies in the nonintrusive character of the measurements. There is no need to enclose the sample in a vessel or to suck large volumes of air into the detector; measurements can be performed in open air and in real time. This should prove especially useful where sticky (polar) gases, like H2O, NH3, CH3OH, etc., are to be detected quantitatively. Main applications include air quality monitoring, especially concerning dry deposition rate measurements using the eddy correlation technique, and the study of volatile metabolite emission of biological samples. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 67 (1996), S. 2914-2923 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We present a quantitative discussion of the acoustic transmission line theory pertaining to experimental results from a resonant photoacoustic cell excited in its first longitudinal mode. Window absorption is optimally suppressed by buffer volumes and tunable air columns. The acoustic behavior of an ultrasensitive one inch condenser microphone is quantitatively described. A small and sensitive photoacoustic cell has been developed for intracavity use in a CO2 waveguide laser permitting measurements of ethylene down to 6 pptv (long term stability 20 pptv) with a time response of 2 s at a trace gas flow of 6 1/h. To demonstrate the fast time response within a biological application the instant ethylene release of a single tomato is measured. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 67 (1996), S. 2317-2324 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The thermoacoustic effect is used to amplify the photoacoustic signal induced by trace gas absorption of CO2 laser radiation. The acoustic wave pattern in a thermoacoustic amplifier coupled to a photoacoustic cell is represented in terms of electric transmission lines. Predictions of this model have resulted in a prototype thermoacoustic–photoacoustic (TAPA) detector to get a better understanding of this combination. The photoacoustic signal strength of the TAPA cell was linear with the trace gas density in the cell. Within this study we observed for the TAPA cell a higher PA signal than generated by a normal PA cell. Design criteria for better thermoacoustic amplification of photoacoustic signal are discussed. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The exhaled air and volatile emission by the skin of human subjects were analyzed for traces of ethene (C2H4) by means of CO2 laser photoacoustic trace gas detection. Due to the extreme sensitivity of the detection system (6 part per trillion volume, 6:1012), these measurements could be performed on-line and noninvasively. Exhaled ethene was used as a biomarker for lipid peroxidation in the skin of human subjects exposed to ultraviolet (UV) radiation from a solarium. A change in the ethene concentration was already observed in the exhaled air after 2 min. Adaptation of the skin to UV exposure and direct skin emission could also be observed. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0301-0104
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0649
    Keywords: 07.60 ; 43.85 ; 42.60
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A photoacoustic intracavity configuration is presented; a resonant photoacoustic cell excited in its first longitudinal mode is placed inside the cavity of a CO2 waveguide laser. Due to the high laser power and the sharp intracavity focus, saturation effects occur in the excitation and relaxation process of absorbing C2H4 molecules. A more optimal configuration is applied to measure the C2H4 emission of several Rumex species. A detection sensitivity of 6 ppt (parts per trillion) C2H4 is reached, equivalent to a minimal detectable absorption of 1.8×10−10 cm−1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Environmental and Experimental Botany 34 (1994), S. 55-61 
    ISSN: 0098-8472
    Keywords: Pisum sativum ; Triticum durum ; ethylene ; germination ; growth
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 12 (1993), S. 1-10 
    ISSN: 1573-5087
    Keywords: Cymbidium ; decanoic acid ; Dianthus caryophyllus ; ethylene ; flower senescence ; octanoic acid ; Petunia hybrida ; pollination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Pollination induced an immediate increase in ethylene production in Dianthus caryophyllus and Petunia hybrida. In Cymbidium, a lag of several hours was observed. In all three species, pollination induced premature flower senescence. Treatment of the stigmatic surface with aminoethoxyvinylglycine prior to pollination effectively blocked the increase in ethylene production and alleviated the detrimental effect of pollination on flower life. In all three tested species, octanoic and decanoic acids, when applied to the stigmatic surface, had no effect on ethylene production and flower life. In isolated Cymbidium lips placed with their cut base in solutions containing these fatty acids, no effects on red colouration, ethylene production, and ethylene forming enzyme activity were observed. In addition, ethylene sensitivity of isolated lips was not affected. The putative regulatory role of short-chain saturated fatty acids in (pollination-induced) flower senescence is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1435-8107
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Both distribution of terrestrial plants and species composition in flood plain communities are strongly influenced by flooding (waterlogging, partial submergence, or submergence). The interaction between a plant's flooding resistance and the seasonal timing, duration, depth, or frequency of flooding often determines plant distribution in flood plains. Flooding may be accompanied by marked physical changes in light, carbon availability, diffusion rate of gases, and density of the environment. Various physiological processes may be affected by these flooding-induced physical changes, including aerobic respiration, photosynthesis, and processes in which light acts as a source of information (e.g., phytochrome photoequilibrium). Certain plant species acclimatize and adapt to these physical changes to relieve the constraints imposed by the flooded environment. Underwater photosynthesis, enhanced shoot elongation, adventitious roots, and aerenchyma formation are typical adaptive responses which are believed to improve the oxygen status of submerged plants. Ethylene and other plant hormones play a central role in the initiation and regulation of most of these adaptive responses, which permit “escape” from anaerobiosis. Mechanisms of direct tolerance of anaerobic conditions, such as a vigorous fermentative respiratory pathway, are of particular importance when the plant is very deeply submerged, or during the night and when the water is sufficiently turbid to exclude light. Studies on the cosmopolitan genus Rumex, distributed in a flooding gradient on river flood plains, have integrated plant hormone physiology with plant ecology. Rumex species showed a high degree of interspecific variation in ethylene production rates, endogenous ethylene concentrations, ethylene sensitivity, and ethylene-mediated growth responses. The field distribution of Rumex species in flooding gradients is explained in terms of a balance between endogenous ethylene concentrations and sensitivity towards this growth regulator (“ethylene economy”). Much data has been gathered using a recently developed laser-driven photoacoustic detection technique capable of detecting six parts of ethylene in 1012 parts air flowing continuously over the plant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1995-09-01
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...