ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-05-16
    Description: Titin, a giant filamentous polypeptide, is believed to play a fundamental role in maintaining sarcomeric structural integrity and developing what is known as passive force in muscle. Measurements of the force required to stretch a single molecule revealed that titin behaves as a highly nonlinear entropic spring. The molecule unfolds in a high-force transition beginning at 20 to 30 piconewtons and refolds in a low-force transition at approximately 2.5 piconewtons. A fraction of the molecule (5 to 40 percent) remains permanently unfolded, behaving as a wormlike chain with a persistence length (a measure of the chain's bending rigidity) of 20 angstroms. Force hysteresis arises from a difference between the unfolding and refolding kinetics of the molecule relative to the stretch and release rates in the experiments, respectively. Scaling the molecular data up to sarcomeric dimensions reproduced many features of the passive force versus extension curve of muscle fibers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kellermayer, M S -- Smith, S B -- Granzier, H L -- Bustamante, C -- AR-42652/AR/NIAMS NIH HHS/ -- GM-32543/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 May 16;276(5315):1112-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Veterinary Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA 99164-6520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9148805" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Connectin ; Elasticity ; Entropy ; Immunoglobulins/chemistry ; Lasers ; Models, Chemical ; Muscle Contraction ; Muscle Proteins/*chemistry ; Muscle Relaxation ; Muscle, Skeletal/chemistry/physiology ; Protein Denaturation ; *Protein Folding ; Protein Kinases/*chemistry ; Stress, Mechanical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-136X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Quantitative ultrastructural and physiological parameters were investigated in three types of muscle fibres ofPerca fluviatilis: white fibres from the m. levator operculi anterior, pink (intermediate) fibres of the m. hyohyoideus and deep red fibres of the m. levator operculi anterior. Times to peak tension and half relaxation times of isometric twitches increased in the mentioned order. The extent of contact between the T system and the sarcoplasmic reticulum and the relative volume and surface area of the terminal cisternae showed an inverse relation with the time to peak tension of the twitch. The maximal isometric tetanic force per unit cross section area was similar for all three investigated types. The inverse relation between the time to peak tension of the twitch and the relative length of contact between T system and SR is in agreement with data obtained for fast- and slow twitch muscle fibres of the carp,Cyprinus carpio L.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-136X
    Keywords: Key words Titin isoforms ; Carp axial muscle ; Gel electrophoresis ; Passive tension ; Passive stiffness ; Fish swimming
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Titin (also known as connectin) is a striated-muscle-specific protein that spans the distance between the Z- and M-lines of the sarcomere. The elastic segment of the titin molecule in the I-band is thought to be responsible for developing passive tension and for maintaining the central position of thick filaments in contracting sarcomeres. Different muscle types express isoforms of titin that differ in their molecular mass. To help to elucidate the relation between the occurrence of titin isoforms and the functional properties of different fibre types, we investigated the presence of different titin isoforms in red and white fibres of the axial muscles of carp. Gel electrophoresis of single fibres revealed that the molecular mass of titin was larger in red than in white fibres. Fibres from anterior and posterior axial muscles were also compared. For both white and red fibres the molecular mass of titin in posterior muscle fibres was larger than in anterior muscle fibres. Thus, the same fibre type can express different titin isoforms depending on its location along the body axis. The contribution of titin to passive tension and stiffness of red anterior and posterior fibres was also determined. Single fibres were skinned and the sarcomere length dependencies of passive tension and passive stiffness were determined. Measurements were made before and after extracting thin and thick filaments using relaxing solutions with 0.6 mol · l−1 KCl and 1 mol · l−1 KI. Tension and stiffness measured before extraction were assumed to result from both titin and intermediate filaments, and tension after extraction from only intermediate filaments. Compared to mammalian skeletal muscle, intermediate filaments developed high levels of tension and stiffness in both posterior and anterior fibres. The passive tension-sarcomere length curve of titin increased more steeply in red anterior fibres than in red posterior fibres and the curve reached a plateau at a shorter sarcomere length. Thus, the smaller titin isoform of anterior fibres results in more passive tension and stiffness for a given sarcomere strain. During continuous swimming, red fibres are exposed to larger changes in sarcomere strain than white fibres, and posterior fibres to larger changes in strain than anterior fibres. We propose that sarcomere strain is one of the functional parameters that modulates the expression of different titin isoforms in axial muscle fibres of carp.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-136X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Isometric contraction parameters were measured for white and red fibre bundles isolated from the m. hyohyoideus of the carp. The two fibre types, which have multiterminal innervation, were stimulated via the nerve as well as epimuscularly. Both red and white fibres reacted to a single stimulus with a twitch. Stimulation via the nerve revealed: 1. Twitches and tetani of white fibres have shorter contraction and relaxation times than those of red fibres. 2. Both types reach similar maximal tetanic tensions (about 12 N/cm2) but red fibres require a higher stimulus frequency to reach this tension. 3. The ratio of twitch tension to maximum tetanic tension is 0.42 for white and 0.27 for red fibres. 4. The maximum slope of tension rise in white fibres is independent of the stimulus frequency; in red fibres it increases at high stimulus frequencies. 5. White fibres are more susceptible to fatigue than red fibres. After about 45 s of repeated tetanization (22 tetani) white fibres had lost half their tension. Red fibres had lost half their tension after about 10 min (300 tetani). 6. Sag, the decline of tension during a tetanus, is greater in white than in red fibres. It has a different frequency dependence in both types. 7. Epimuscular stimulation resulted in a slow, incomplete contraction and a very slow decline of tension, especially in red fibres. 8. In agreement with existing biochemical, electromyographical and ultrastructural data, white fibres are adapted for quick short duration activity and red fibres for slow, sustained activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-29
    Description: A common cause of heart failure is hypertrophic cardiomyopathy (HCM) with a prevalence of at least 1 in 500 in adults (1); more recent data suggest that the prevalence of HCM may be as high as 1 in 200 (2). HCM is characterized by disorganized myocyte structure; formation of excess...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-27
    Description: Nebulin is a giant filamentous protein that is coextensive with the actin filaments of the skeletal muscle sarcomere. Nebulin mutations are the main cause of nemaline myopathy (NEM), with typical adult patients having low expression of nebulin, yet the roles of nebulin in adult muscle remain poorly understood. To establish nebulin's functional roles in adult muscle, we studied a novel conditional nebulin KO (Neb cKO) mouse model in which nebulin deletion was driven by the muscle creatine kinase (MCK) promotor. Neb cKO mice are born with high nebulin levels in their skeletal muscles, but within weeks after birth nebulin expression rapidly falls to barely detectable levels Surprisingly, a large fraction of the mice survive to adulthood with low nebulin levels (〈5% of control), contain nemaline rods and undergo fiber-type switching toward oxidative types. Nebulin deficiency causes a large deficit in specific force, and mechanistic studies provide evidence that a reduced fraction of force-generating cross-bridges and shortened thin filaments contribute to the force deficit. Muscles rich in glycolytic fibers upregulate proteolysis pathways (MuRF-1, Fbxo30 /MUSA1, Gadd45a) and undergo hypotrophy with smaller cross-sectional areas (CSAs), worsening their force deficit. Muscles rich in oxidative fibers do not have smaller weights and can even have hypertrophy, offsetting their specific-force deficit. These studies reveal nebulin as critically important for force development and trophicity in adult muscle. The Neb cKO phenocopies important aspects of NEM (muscle weakness, oxidative fiber-type predominance, variable trophicity effects, nemaline rods) and will be highly useful to test therapeutic approaches to ameliorate muscle weakness.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-10-08
    Description: Titin, the largest protein known, forms a giant filament in muscle where it spans the half sarcomere from Z disk to M band. Here we genetically targeted a stretch of 14 immunoglobulin-like and fibronectin type 3 domains that comprises the I-band/A-band (IA) junction and obtained a viable mouse model. Super-resolution...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-11-04
    Description: Leiomodin 2 (Lmod2) is an actin-binding protein that has been implicated in the regulation of striated muscle thin filament assembly; its physiological function has yet to be studied. We found that knockout of Lmod2 in mice results in abnormally short thin filaments in the heart. We also discovered that Lmod2...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-03-18
    Description: We thank Tskhovrebova et al. (1) for allowing us to clarify the conclusions that we drew from our studies. In this work, we genetically targeted a stretch of 14Ig/FnIII domains that comprises the IA junction and revealed that deleting the IA junction moves the attachment point of titin’s spring region...
    Keywords: Letters
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...