ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-12
    Description: Photosynthetic organisms use nonphotochemical quenching (NPQ) mechanisms to dissipate excess absorbed light energy and protect themselves from photooxidation. In the model green alga Chlamydomonas reinhardtii, the capacity for rapidly reversible NPQ (qE) is induced by high light, blue light, and UV light via increased expression of LHCSR and PSBS genes that are necessary for qE. Here, we used a forward genetics approach to identify SPA1 and CUL4, components of a putative green algal E3 ubiquitin ligase complex, as critical factors in a signaling pathway that controls light-regulated expression of the LHCSR and PSBS genes in C. reinhardtii. The spa1 and cul4 mutants accumulate increased levels of LHCSR1 and PSBS proteins in high light, and unlike the wild type, they express LHCSR1 and exhibit qE capacity even when grown in low light. The spa1-1 mutation resulted in constitutively high expression of LHCSR and PSBS RNAs in both low light and high light. The qE and gene expression phenotypes of spa1-1 are blocked by mutation of CrCO, a B-box Zn-finger transcription factor that is a homolog of CONSTANS, which controls flowering time in plants. CONSTANS-like cis-regulatory sequences were identified proximal to the qE genes, consistent with CrCO acting as a direct activator of qE gene expression. We conclude that SPA1 and CUL4 are components of a conserved E3 ubiquitin ligase that acts upstream of CrCO, whose regulatory function is wired differently in C. reinhardtii to control qE capacity via cis-regulatory CrCO-binding sites at key photoprotection genes.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: In this manuscript we address the challenges associated with the ability to predict radiation sensitivity associated with exposure to either cosmic radiation or X-rays in a population study, by monitoring DNA damage sensing protein 53BP1 forming small nuclear radiation-induced foci (RIF) as a surrogate biomarker of DNA double strand breaks (DSB). 76 primary skin fibroblasts were isolated from 10 collaborative cross strains and five reference inbred mice (C57Bl/6, BALB/CByJ, B6C3, C3H and CBA/CaJ) and exposed to three different charged nuclei of increasing LET (350 MeV/n Si, 350 MeV/n Ar and 600 MeV/n Fe) and X-ray. Our data brings strong evidence against the classic "contact-first" model where DSBs are assumed to be immobile and repaired at the lesion site. In contrast, our model suggests nearby DSBs move into single repair unit characterized by large RIF before the repair machinery kicks in. Such model has the advantage of being much more efficient molecularly but is poorly suited to deal with cosmic radiation, where energy is concentrated along the particle trajectory, inducing a large density of DSBs along each particle track. In accordance with this model, RIF quantification after X-ray exposition showed a saturated dose response for early time points post-irradiation for all strains. Similarly, the high-LET response showed that RIF number matched the number of track per cell, not the number of expected DSB per cell (1). At the temporal level, we noted that the percentage of unrepaired high-LET tracks over a 48 hour time-course increased with LET, confirming that the DNA repair process becomes more difficult as more DSB coalesce into single RIF. There was also good agreement between persistent RIF levels measured in-vitro in the primary skin cultures and survival levels of T-cells and B-cells collected in blood samples from 10 CC strains 24 hours after 0.1 Gy whole-body dose of X-ray. This suggests that persistent RIF 24 hour post-IR is a good surrogate in-vitro biomarker for in-vivo radiation toxicity. Finally, at the genomic level, large differences in repair rates between strains for high-LET allowed us to identify suggestive genetic loci associated with radiation sensitivity. Interestingly, the two highest LETs provided the most strain variation with a common locus on Chromosome 10 highly enriched for DNA repair associated genes we discussed in detail.
    Keywords: Space Radiation; Life Sciences (General)
    Type: ARC-E-DAA-TN53515
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: We hypothesize that DNA damage induced by high local energy deposition, occurring when cells are traversed by high-LET (Linear Energy Transfer) particles, can be experimentally modeled by exposing cells to high doses of low-LET. In this work, we validate such hypothesis by characterizing and correlating the time dependence of 53BP1 radiation-induced foci (RIF) for various doses and LET across 72 primary skin fibroblast from mice. This genetically diverse population allows us to understand how genetic may modulate the dose and LET relationship. The cohort was made on average from 3 males and 3 females belonging to 15 different strains of mice with various genetic backgrounds, including the collaborative cross (CC) genetic model (10 strains) and 5 reference mice strains. Cells were exposed to two fluences of three HZE (High Atomic Energy) particles (Si 350 megaelectronvolts per nucleon, Ar 350 megaelectronvolts per nucleon and Fe 600 megaelectronvolts per nucleon) and to 0.1, 1 and 4 grays from a 160 kilovolt X-ray. Individual radiation sensitivity was investigated by high throughput measurements of DNA repair kinetics for different doses of each radiation type. The 53BP1 RIF dose response to high-LET particles showed a linear dependency that matched the expected number of tracks per cell, clearly illustrating the fact that close-by DNA double strand breaks along tracks cluster within one single RIF. By comparing the slope of the high-LET dose curve to the expected number of tracks per cell we computed the number of remaining unrepaired tracks as a function of time post-irradiation. Results show that the percentage of unrepaired track over a 48 hours follow-up is higher as the LET increases across all strains. We also observe a strong correlation between the high dose repair kinetics following exposure to 160 kilovolts X-ray and the repair kinetics of high-LET tracks, with higher correlation with higher LET. At the in-vivo level for the 10-CC strains, we observe that drops in the number of T-cells and B-cells found in the blood of mice 24 hours after exposure to 0.1 gray of 320 kilovolts X-ray correlate well with slower DNA repair kinetics in skin cells exposed to X-ray. Overall, our results suggest that repair kinetics found in skin is a surrogate marker for in-vivo radiation sensitivity in other tissue, such as blood cells, and that such response is modulated by genetic variability.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN42188 , Annual International Meeting of the Radiation Research Society (RRS); Oct 15, 2017 - Oct 18, 2017; Cancun; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: Predicting cancer risk associated with cosmic radiation remains a mission-critical challenge for NASA radiation health scientists and mission planners. Epidemiological data are lacking and risk methods do not take individual radiation sensitivity into account. In our approach we hypothesize that genetic factors strongly influence risk of cancer from space radiation and that biomarkers reflecting DNA damage and cell death are ideal tools to predict risk and monitor potential health effects post-flight. At this workshop, we will be reporting the work we have done over the first 9 months of this proposal. Skin cells from 15 different strains of mice already characterized for radiation-induced cancer sensitivity (B6C3F; BALB/cByJ, C57BL/6J, CBA/CaJ, C3H/HeMsNrsf), and 10 strains from the DOE collaborative cross-mouse model were expanded from ear biopsy and cultivated until Passage 3. On average, 3 males and 3 females for each strain were expanded and frozen for further characterization at the NSRL beam line during the NSRL16C run for three LET (350 MeV/n Si, 350 MeV/n Ar and 600 MeV/n Fe) and two ion fluences (1 and 3 particles per cell). The mice work has established new metrics for the usage of Radiation Induced Foci as a marker for various aspect of DNA repair deficiencies. In year 2, we propose to continue characterization of the mouse lines with low LET to identify loci specific to high- versus low- LET and establish genetic linkage for the various DNA repair biomarkers. Correlation with cancer risk from each animals strain and gender will also be investigated. On the human side, we will start characterizing the DNA damage response induced ex-vivo in 200 human's blood donors for radiation sensitivity with a tentative 500 donors by the end of this project. All ex-vivo phenotypic data will be correlated to genetic characterization of each individual human donors using SNP arrays characterization as done for mice. Similarly, ex-vivo phenotypic features from mice will be associated to cancer risk, to identify which biomarkers correlate the most with cancer risk. Genetic traits across humans will also be associated to radiation phenotypic features as a function of age and gender.
    Keywords: Space Radiation; Life Sciences (General); Aerospace Medicine
    Type: ARC-E-DAA-TN38893 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...