ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2023-02-10
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Marine Chemistry at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2023.
    Description: Marine dissolved organic matter (DOM) is an actively cycling reservoir of carbon containing thousands of unique compounds. To describe the complex dynamics that govern the biological transformation and decomposition of compounds in this molecular black box, models of DOM reactivity use chemical characteristics, as well as environmental parameters, to describe trends in the turnover time of classes of DOM. In this thesis, I describe two projects that examine hypotheses regarding the turnover of two classes of DOM. In the 1st project, I test the assumption made by the size–reactivity continuum hypothesis that high molecular weight (〉 1 kDa) DOM (HMWDOM) represents a diagenetic intermediate between large labile material and small recalcitrant compounds. Size-fractions of HMWDOM were collected using size-exclusion chromatography, and the changes in MW and chemical composition of the fractions were studied using diffusion-ordered spectroscopy. The size fraction carbon isotopic values were correlated with the proportion of humic substances in the fractions. Through linear modeling, the apparent radiocarbon ages of the two major components of HMWDOM were determined to be 1-3 yrs and 2-4 kyrs, respectively. Combined with the measurements of MW distribution this work demonstrates that HMWDOM is composed of two components that have contrasting decomposition pathways in the ocean. HMWDOM cannot be treated as a single DOM pool when incorporated into models of DOM diagenesis. The 2nd project in this dissertation examines the remineralization of phosphonates, compounds with a direct C-P bond, in the lower euphotic zone using a newly developed fluorescent assay, which measures the activity of carbon-phosphorus lyase. C-P lyase activity (CLA) profiles from the North Pacific Subtropical Gyre (NPSG) showed a sharp activity maximum near the deep-chlorophyll maximum (DCM). High-resolution nutrient measurements suggest that this subsurface CLA maximum is the result of a high nitrate flux at the top of the nitracline. The composition of particulate-P through the euphotic zone was also examined. While phosphonates were not detected in suspended particles, a significant amount of aminoethylphosphonate was measured in sinking material, suggesting eukaryotic material may be an important source of phosphonates to the ocean.
    Description: The studies described in this dissertation were supported by the Simons Foundation (SCOPE award 329108 to D.M.K. and D.J.R.), the Gordon and Betty Moore Foundation (3794; D.M.K. and 6000; D.J.R.), and the National Science Foundation (NSF: OCE-1634080; D.J.R.) and I thank them for their support.
    Keywords: Dissolved organic matter ; Phosphonate ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...