ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: NASA's Curiosity rover has documented predominantly fluvial sedimentary rocks along its path from the landing site to the toe of the Peace Vallis alluvial fan (0.5 km to the east) and then along its 8 km traverse across Aeolis Palus to the base of Aeolis Mons (Mount Sharp). Lacustrine facies have been identified at the toe of the Peace Vallis fan and in the lowermost geological unit exposed on Aeolis Mons. These two depositional systems provide end members for martian fluvial/alluvial-lacustrine facies models. The Peace Vallis system consisted of an 80 square kilometers alluvial fan with decimeter-thick, laterally continuous fluvial sandstones with few sedimentary structures. The thin lacustrine unit associated with the fan is interpreted as deposited in a small lake associated with fan runoff. In contrast, fluvial facies exposed over most of Curiosity's traverse to Aeolis Mons consist of sandstones with common dune-scale cross stratification (including trough cross stratification), interbedded conglomerates, and rare paleochannels. Along the southwest portion of the traverse, sandstone facies include south-dipping meter-scale clinoforms that are interbedded with finer-grained mudstone facies, interpreted as lacustrine. Sedimentary structures in these deposits are consistent with deltaic deposits. Deltaic deposition is also suggested by the scale of fluvial to lacustrine facies transitions, which occur over greater than 100 m laterally and greater than 10 m vertically. The large scale of the transitions and the predicted thickness of lacustrine deposits based on orbital mapping require deposition in a substantial river-lake system over an extended interval of time. Thus, the lowermost, and oldest, sedimentary rocks in Gale Crater suggest the presence of substantial fluvial flow into a long-lived lake. In contrast, the Peace Vallis alluvial fan onlaps these older deposits and overlies a major unconformity. It is one of the youngest deposits in the crater, and requires only short-lived, transient flows.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-33088 , 2015 Joint Assembly; May 03, 2015 - May 07, 2015; Montreal, Canada; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA-TM-89871 , NAS 1.15:89871
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins, were used to trace the geologic evolution of Margaritifer Sinus Quandrangle. The oldest dated surface covering these basins evolved during the period of intense bombardment. Since that time four resurfacing events have occurred. The first three were all of regional extent, while the fourth, occurred locally, filling basins. Valley networks, incised in the third event unit, are always buried by the fourth event unit when present. A peak in geomorphic activity occurred from 10,000 to 5000. Events during this period included the formation of Uzboi/Ladon Valles with deposition in Ladon Basin, and the formation of Samara and Parana/Loire Valles in MC19SE. Flow out of Ladon Basin and to a lesser extent Samara and Parana/Loire Valles created etched terrain at their confluence that was synchronous with initiation of Margaritifer and Iani Chaos. The range of dates for the chaos may be due to periodic collapse. The extensive, well integrted nature of Samara and Parana/Loire Valles requires the existence of a long period of favorable climatic conditions to allow their formation. Development of these two systems was probably through sapping processes.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Advances in Planetary Geology 2; 259 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...