ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-02-08
    Description: The response of the El Niño/Southern Oscillation (ENSO) to tropical volcanic eruptions has important worldwide implications, but remains poorly constrained. Paleoclimate records suggest an “El Niño-like” warming 1 year following major eruptions [Adams JB, Mann ME, Ammann CM (2003)Nature426:274–278] and “La Niña-like” cooling within the eruption year [Li J, et al. (2013)Nat Clim Chang3:822–826]. However, climate models currently cannot capture all these responses. Many eruption characteristics are poorly constrained, which may contribute to uncertainties in model solutions—for example, the season of eruption occurrence is often unknown and assigned arbitrarily. Here we isolate the effect of eruption season using experiments with the Community Earth System Model (CESM), varying the starting month of two large tropical eruptions. The eruption-year atmospheric circulation response is strongly seasonally dependent, with effects on European winter warming, the Intertropical Convergence Zone, and the southeast Asian monsoon. This creates substantial variations in eruption-year hydroclimate patterns, which do sometimes exhibit La Niña-like features as in the proxy record. However, eruption-year equatorial Pacific cooling is not driven by La Niña dynamics, but strictly by transient radiative cooling. In contrast, equatorial warming the following year occurs for all starting months and operates dynamically like El Niño. Proxy reconstructions confirm these results: eruption-year cooling is insignificant, whereas warming in the following year is more robust. This implies that accounting for the event season may be necessary to describe the initial response to volcanic eruptions and that climate models may be more accurately simulating volcanic influences than previously thought.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-03
    Description: The satellite altimeter record has provided an unprecedented database for understanding sea-level rise and has recently reached a major milestone at 25 years in length. A challenge now exists in understanding its broader significance and its consequences for sea-level rise in the coming decades and beyond. A key question is whether the pattern of altimeter-era change is representative of longer-term trends driven by anthropogenic forcing. In this work, two multimember climate ensembles, the Community Earth System Model (CESM) and the Earth System Model Version 2M (ESM2M), are used to estimate patterns of forced change [also known as the forced response (FR)] and their magnitudes relative to internal variability. It is found that the spatial patterns of 1993–2018 trends in the ensembles correlate significantly with the contemporaneous FRs (0.55 ± 0.10 in the CESM and 0.61 ± 0.09 in the ESM2M) and the 1950–2100 FRs (0.43 ± 0.10 in the CESM and 0.51 ± 0.11 in the ESM2M). Unforced runs for each model show such correlations to be extremely unlikely to have arisen by chance, indicating an emergence of both the altimeter-era and long-term FRs and suggesting a similar emergence in nature. Projected patterns of the FR over the coming decades resemble those simulated during the altimeter era, suggesting a continuation of the forced pattern of change in nature in the coming decades. Notably, elevated rates of rise are projected to continue in regions that are susceptible to tropical cyclones, exacerbating associated impacts in a warming climate.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-08
    Description: The two dominant drivers of the global mean sea level (GMSL) variability at interannual timescales are steric changes due to changes in ocean heat content and barystatic changes due to the exchange of water mass between land and ocean. With Gravity Recovery and Climate Experiment (GRACE) satellites and Argo profiling floats, it has been possible to measure the relative steric and barystatic contributions to GMSL since 2004. While efforts to “close the GMSL budget” with satellite altimetry and other observing systems have been largely successful with regards to trends, the short time period covered by these records prohibits a full understanding of the drivers of interannual to decadal variability in GMSL. One particular area of focus is the link between variations in the El Niño−Southern Oscillation (ENSO) and GMSL. Recent literature disagrees on the relative importance of steric and barystatic contributions to interannual to decadal variability in GMSL. Here, we use a multivariate data analysis technique to estimate variability in barystatic and steric contributions to GMSL back to 1982. These independent estimates explain most of the observed interannual variability in satellite altimeter-measured GMSL. Both processes, which are highly correlated with ENSO variations, contribute about equally to observed interannual GMSL variability. A theoretical scaling analysis corroborates the observational results. The improved understanding of the origins of interannual variability in GMSL has important implications for our understanding of long-term trends in sea level, the hydrological cycle, and the planet’s radiation imbalance.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-10
    Description: The emergence of a spatial pattern in the externally forced response (FR) of dynamic sea level (DSL) during the altimeter era has recently been demonstrated using climate models but our understanding of its initial emergence, drivers, and implications for the future is poor. Here the anthropogenic forcings of the DSL pattern are explored using the Community Earth System Model Large Ensemble (CESM-LE) and Single-Forcing Large Ensemble, a newly available set of simulations where values of individual forcing agents remain fixed at 1920 levels, allowing for an estimation of their effects. Statistically significant contributions to the DSL FR are identified for greenhouse gases (GHGs) and industrial aerosols (AERs), with particularly strong contributions resulting from AERs in the mid-twentieth century and GHGs in the late twentieth and twenty-first century. Secondary, but important, contributions are identified for biomass burning aerosols in the equatorial Atlantic Ocean in the mid-twentieth century, and for stratospheric ozone in the Southern Ocean during the late twentieth century. Key to understanding regional DSL patterns are ocean heat content and salinity anomalies, which are driven by surface heat and freshwater fluxes, ocean dynamics, and the spatial structure of seawater thermal expansivity. Potential implications for the interpretation of DSL during the satellite era and the longer records from tide gauges are suggested as a topic for future research.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-11-01
    Description: This paper describes the Stratospheric Aerosol Geoengineering Large Ensemble (GLENS) project, which promotes the use of a unique model dataset, performed with the Community Earth System Model, with the Whole Atmosphere Community Climate Model as its atmospheric component [CESM1(WACCM)], to investigate global and regional impacts of geoengineering. The performed simulations were designed to achieve multiple simultaneous climate goals, by strategically placing sulfur injections at four different locations in the stratosphere, unlike many earlier studies that targeted globally averaged surface temperature by placing injections in regions at or around the equator. This advanced approach reduces some of the previously found adverse effects of stratospheric aerosol geoengineering, including uneven cooling between the poles and the equator and shifts in tropical precipitation. The 20-member ensemble increases the ability to distinguish between forced changes and changes due to climate variability in global and regional climate variables in the coupled atmosphere, land, sea ice, and ocean system. We invite the broader community to perform in-depth analyses of climate-related impacts and to identify processes that lead to changes in the climate system as the result of a strategic application of stratospheric aerosol geoengineering.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-05-02
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: Emergence of global mean sea level (GMSL) from a ‘hiatus’ following a persistent La Niña highlights the need to understand the causes of interannual variability in GMSL. Several studies link interannual variability in GMSL to anomalous transport of water mass between land and ocean—and subsequent changes in water storage in these reservoirs—primarily driven by El Niño/Southern Oscillation (ENSO). Despite this, asymmetries in teleconnections between ENSO mode and land water storage have received less attention. We use historical simulations of natural climate variability to characterize asymmetries in the hydrological response to ENSO based on phase and duration. Findings indicate pronounced phase-specific and duration-specific asymmetries covering up to 93 and 50 million km2 land area, respectively. The asymmetries are seasonally dependent, and based on the mean regional climate are capable of influencing inherently bounded storage by pushing the storage-precipitation relationship towards nonlinearity. The nonlinearities are more pronounced in dry regions in the dry season, wet regions in the wet season, and during Year 2 of persistent ENSO events, limiting the magnitude of associated anomalies under persistent ENSO influence. The findings have implications for a range of stakeholders, including sea level researchers and water managers.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-10-05
    Description: The current Earth’s energy imbalance (EEI) can best be estimated from changes in ocean heat content (OHC), complemented by top-of-atmosphere (TOA) radiation measurements and an assessment of the small non-ocean components. Sustained observations from the Argo array of autonomous profiling floats enable near-global estimates of OHC since 2005, which reveal considerable cancellation of variations in the upper 300 m. An analysis of the monthly contributions to EEI from non-ocean components (land and ice) using the Community Earth System Model (CESM) Large Ensemble reveals standard deviations of 0.3–0.4 W m−2 (global); largest values occur in August, but values are below 0.75 W m−2 greater than 95% of the time. Global standard deviations of EEI of 0.64 W m−2 based on top-of-atmosphere observations therefore substantially constrain ocean contributions, given by the tendencies of OHC. Instead, monthly standard deviations of many Argo-based OHC tendencies are 6–13 W m−2, and nonphysical fluctuations are clearly evident. It is shown that an ocean reanalysis with multivariate dynamical data assimilation features much better agreement with TOA radiation, and 44% of the vertically integrated short-term OHC trend for 2005–14 of 0.8 ± 0.2 W m−2 (globally) occurs below 700-m depth. Largest warming occurs from 20° to 50°S, especially over the southern oceans, and near 40°N in all ocean analyses. The EEI is estimated to be 0.9 ± 0.3 W m−2 for 2005–14.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-26
    Description: An accurate diagnosis of ocean heat content (OHC) is essential for interpreting climate variability and change, as evidenced for example by the broad range of hypotheses that exists for explaining the recent hiatus in global mean surface warming. Potential insights are explored here by examining relationships between OHC and sea surface height (SSH) in observations and two recently available large ensembles of climate model simulations from the mid-twentieth century to 2100. It is found that in decadal-length observations and a model control simulation with constant forcing, strong ties between OHC and SSH exist, with little temporal or spatial complexity. Agreement is particularly strong on monthly to interannual time scales. In contrast, in forced transient warming simulations, important dependencies in the relationship exist as a function of region and time scale. Near Antarctica, low-frequency SSH variability is driven mainly by changes in the circumpolar current associated with intensified surface winds, leading to correlations between OHC and SSH that are weak and sometimes negative. In subtropical regions, and near other coastal boundaries, negative correlations are also evident on long time scales and are associated with the accumulated effects of changes in the water cycle and ocean dynamics that underlie complexity in the OHC relationship to SSH. Low-frequency variability in observations is found to exhibit similar negative correlations. Combined with altimeter data, these results provide evidence that SSH increases in the Indian and western Pacific Oceans during the hiatus are suggestive of substantial OHC increases. Methods for developing the applicability of altimetry as a constraint on OHC more generally are also discussed.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-06-03
    Description: The adequate simulation of internal climate variability is key for our understanding of climate as it underpins efforts to attribute historical events, predict on seasonal and decadal time scales, and isolate the effects of climate change. Here the skill of models in reproducing observed modes of climate variability is assessed, both across and within the CMIP3, CMIP5, and CMIP6 archives, in order to document model capabilities, progress across ensembles, and persisting biases. A focus is given to the well-observed tropical and extratropical modes that exhibit small intrinsic variability relative to model structural uncertainty. These include El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), the North Atlantic Oscillation (NAO), and the northern and southern annular modes (NAM and SAM). Significant improvements are identified in models’ representation of many modes. Canonical biases, which involve both amplitudes and patterns, are generally reduced across model generations. For example, biases in ENSO-related equatorial Pacific sea surface temperature, which extend too far westward, and associated atmospheric teleconnections, which are too weak, are reduced. Stronger tropical expression of the PDO in successive CMIP generations has characterized their improvement, with some CMIP6 models generating patterns that lie within the range of observed estimates. For the NAO, NAM, and SAM, pattern correlations with observations are generally higher than for other modes and slight improvements are identified across successive model generations. For ENSO and PDO spectra and extratropical modes, changes are small compared to internal variability, precluding definitive statements regarding improvement.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...