ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-04-15
    Print ISSN: 1018-4813
    Electronic ISSN: 1476-5438
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
  • 4
    Publication Date: 2013-11-15
    Description: Background T-cell acute lymphoblastic leukemia (T-ALL) is caused by the cooperation of multiple oncogenic lesions. Recent evidence supports that IL-7 and its receptor IL-7R contribute to T-ALL development (Zenatti et al, 2011). The two main pathways induced by IL-7R are JAK/STAT5 and PI3K/Akt/mTOR. Activating mutations to IL7R, JAK1, JAK2 or JAK3 are estimated to occur in 20-30% of all T-ALL patients (Cools 2013). STAT5 plays an important role in many hematologic malignancies but constitutive STAT5 activation often is a secondary event. Mutations in STAT5B (N642H) were recently described in LGL-leukemia in patients with an unusually aggressive and fatal form of the disease (Rajala et al, 2013). In other cancers, including ALL, patients with mutations in STAT5B have not been described. Here we report novel activating STAT5B mutations as drivers of T-ALL. Methods We performed exome sequencing of bone marrow (BM) samples from an 18-year-old female with relapsed T-ALL. Targeted next-generation amplicon sequencing and Sanger sequencing was used to analyze the region encoding the STAT5B SRC homology 2 (SH2) domain including the N642, T648 and I704 codons in a cohort of 17 adult and pediatric T-ALL patients treated at HUCH 2008-2013. For functional studies STAT5B expression vectors with the N642H, T648S or I704L mutation and an expression vector with both N642H and T648S mutations were used to transiently transfect HEK293 cells. To investigate the effect on transcriptional activity we co-transfected the mutant constructs with a STAT5 luciferase reporter plasmid and used Western blot analysis to study the phosphorylation status of the generated constructs. For drug sensitivity of STAT5B mutated cells we performed ex vivo drug testing on primary blasts from the index patient using a comprehensive set of 202 oncology drugs (approved and in clinical development). Each drug was tested over a 10,000-fold concentration range. Results Sequencing of the index patient revealed 3 different somatic missense mutations in STAT5B (T648S, N642H, I704L) and mutations in KRAS, WT1 and SUZ12. No mutations affecting the JAK genes or IL7R were detected. All STAT5B mutations were located in the SH2 domain, which mediates dimerization and activation by trans-phosphotyrosine binding. The same three STAT5B mutations were also found in the diagnostic sample and most likely represent founding events in leukemogenesis. The N642H and T648S mutations occurred on the same allele with tumor mutation frequencies of approximately 40% while the I704L mutation occurred on a different allele with a similar tumor mutation frequency. To investigate the prevalence of STAT5B mutations in T-ALL we sequenced 17 BM samples from T-ALL patients. In this cohort we could not detect any other patients carrying mutations in the STAT5B SH2 domain. Western blot analysis made with mutant constructs showed that the N642H and I704L mutations induced constitutive phosphorylation of STAT5B. Compared to wild type STAT5B the N642H and I704L mutants induced 47- and 6-fold increases in transcriptional activity, respectively, while T648S mutation had no effect in the assays. The construct with both the N642H and T648S mutations showed the highest amount of constitutive phosphorylation and induced a 56-fold increase in transcriptional activity compared to wild type STAT5B. Using ex vivo drug testing the STAT5B mutated blasts were resistant (EC50≥1 uM) to inhibitors of PI3K (e.g. idelalisib, XL147), dual inhibitors of PI3K/mTOR (PF-04691502, dactolisib) and mTOR inhibitors (temsirolimus, everolimus). Furthermore the blasts showed no response to AKT1 inhibitors (MK-2220) or JAK inhibitors (ruxolitinb, tofacitinib). In contrast, the cells were most sensitive to the BCL-2/BCL-XL inhibitor navitoclax (EC50 83 nM). Summary STAT5B mutations are uncommon in T-ALL but their occurrence underlines the significance of the IL7R-JAK-STAT5 pathway in the pathogenesis of T-ALL. While STAT5B mutant blasts were not sensitive to inhibitors targeting JAK kinases, the cells were unusually sensitive to inhibitors of target molecules of STAT5B, including anti-apoptotic BCL-2 proteins. These results suggest that BCL-2/BCL-XL inhibitors such as navitoclax are novel candidate therapies for T-ALL patients. Disclosures: Mustjoki: Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau. Porkka:BMS: Consultancy, Research Funding, Speakers Bureau; Novartis: Consultancy, Research Funding, Speakers Bureau.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-16
    Description: Abstract 871 Background: Large granular lymphocytic (LGL) leukemia is a rare lymphoproliferative disease, characterized by the clonal expansion of cytotoxic CD3+CD8+ T-cells or CD3-CD16/56+ natural killer (NK)-cells. It is often associated with autoimmune phenomena (e.g. cytopenias, rheumatoid arthritis). We recently identified somatic mutations in the STAT3 gene in 40% of monoclonal T-LGL cases (Koskela et al, NEJM, 2012). Here, we report the discovery and functional analysis of novel STAT5b mutations as well as small subclones of STAT3 mutations in other LGL patients, expanding the evidence implicating STAT activation in LGL. METHODS: In order to find novel LGL-leukemia associated mutations, exome sequencing was done from untreated STAT3 mutation negative T-LGL leukemia patients using CD8+ LGL-leukemic cells and matched CD4+ control cells. Samples from 158 T-LGL and 40 NK-LGL leukemia patients were further analyzed using both targeted Sanger sequencing and ultra-deep targeted next-gen amplicon sequencing with up to 10,000x coverage (MiSeq, Illumina). Functional analysis of mutated proteins was carried out in Hela cells by Western analysis and luciferase reporter assays. RESULTS: Exome sequencing revealed a novel somatic missense mutation Y665F in the STAT5b gene in two T-LGL patients diagnosed with WHO2009 criteria with a large CD8+ T-LGL clone (〉90%). Only wild-type STAT5b was seen in the matched CD4+ control cells of these patients. Amplicon sequencing of exon 16 of STAT5b (corresponding to the Y665F site) in 158 T-LGL and 40 NK-LGL patients revealed an additional mutation (N642H) in one T-LGL and one NK-LGL patient, resulting in the 2% total frequency (4/198) of STAT5b mutations across all patients. The N642H and Y665F mutations were both located in the Src homology 2 (SH2) domain of STAT5b, which mediates dimerization and activation by trans-phosphotyrosine binding. STAT3 mutations previously reported in T-LGL patients were located in the corresponding domain. The transcriptional activity of wild-type and mutant STAT5b proteins (N642H and Y665F) was assayed in cells carrying a luciferase reporter with STAT5 binding elements. Luciferase activity of Hela cells transfected with the mutated STAT5b constructs was significantly increased compared to wild-type STAT5b. Furthermore, both the N642H and Y665F variants of STAT5b exhibited higher levels of tyrosine (Y694) phosphorylation than the wild type protein. The exon 21 in the SH2 domain of the STAT3 gene was also screened by ultra-deep next-gen amplicon sequencing, both from the original T-LGL patient cohort (n=77, patients with monoclonal disease) and 142 additional monoclonal/oligoclonal LGL patients. In the monoclonal cohort, a total of nine new STAT3 mutation positive patients were detected by amplicon sequencing, raising the total number of positive cases to 41 (53%) from the 32 identified by Sanger sequencing. Concomitant to the previously described Y640F, N647I, K658N, D661H, D661V and D661Y STAT3 mutations, several novel mutations in this gene were found: I659L, Q643H, G656C, K658H, K658R and D661I. In the oligoclonal LGL cohort, the mutation frequency was lower (31/142, 22%), suggesting that it may also include patients with reactive polyclonal LGL proliferation. CONCLUSIONS: Our mutational and functional data affirm that STAT family transcription factors play a critical role in the pathogenesis of LGL leukemia. In addition to the previously identified mutations in the STAT3 gene, we found recurrent somatic STAT5b mutations in LGL leukemia. Furthermore, our ultra-deep (10,000x) next-gen sequencing revealed small subclones of STAT3 mutations in patients with oligoclonal LGL. Both STAT3 and STAT5b mutations increased the phosphorylation and transcriptional activity of corresponding proteins. The detection of STAT mutations should be included in the diagnostic assessment of LGL leukemia. Disclosures: Koskela: Novartis: Honoraria; BMS: Honoraria; Janssen-Cilag: Honoraria. Kallioniemi:TEKES-FiDiPro: Research Funding. Porkka:Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding. Maciejewski:NIH: Research Funding; Aplastic Anemia&MDS International Foundation: Research Funding. Mustjoki:Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-11-29
    Description: The pathogenesis of common variable immunodeficiency (CVID) and many other immunodeficiencies is elusive, and no cure for these diseases exists. The characteristic features of CVID are immunoglobulin deficiency and recurrent infections, but autoimmunity co-manifests in 30% and lymphoproliferation in 50% of CVID cases. The failure to produce sufficient quantities of immunoglobulins is attributed to B cells, but as T cells are critical players in adaptive immune response and autoimmune disease, they have also suggested to play a role in CVID. As monogenic germline mutations account only for 2-10% of CVID cases, the etiology of CVID remains unknown in most cases. To study if somatic mutations in T cells contribute to immunodeficiencies, we recruited patients with broad immune dysregulation: 8 patients with late-onset CVID, and 9 patients with other type of immunodeficiency and/or severe autoimmunity. All patients signed informed consent and the declaration of Helsinki principles were followed. Study design and key patient characteristics are depicted in the Figure. To discover somatic mutations in T cells, we sequenced both CD4+ and CD8+ cells with a custom gene panel comprising of 2500 immune-related genes with an average coverage of 500x. Somatic variants were identified using the GATK MuTect2 toolset by using a panel of 21 healthy controls' CD4+ and CD8+ cells as a background. Variants were called using paired samples (CD4+ vs CD8+ and vice versa). This approach identifies variants that have occurred in mature T cells. To complement this approach, we performed variant calling also in single-sample mode to identify variants originating from hematopoietic progenitors. Paired-sample analyses revealed 44 somatic mutations in mature T cells in 10/17 (59%) patients: 30 (68%) in CD8+ and 14 (32%) in CD4+ cells. The mutations included 2 frameshift-, 37 missense-, and 5 nonsense variants. In silico tools (both Polyphen-2 and SIFT) predicted 19 (51%) of the missense mutations to be damaging. The Catalogue Of Somatic mutations In Cancer (COSMIC) database included 9/44 (20%) of all mutations. Also, pathway analysis annotated 20% of the mutated genes to be involved in inflammatory response regulation, 27.5% in protein phosphorylation regulation, and 22.5% in positive regulation of cell proliferation. Interesting mutation findings included two patients with STAT5B mutations (N418K and T628S) with a low variant-allele (VAF) frequencies (3.2-3.6% in CD4+ cells), one patient with a KRAS T58I mutation (VAF 7.9% in CD8+), and two patients with distinct C5AR1 mutations (R197W and T62M). Complementing the paired-sample variant calling strategy, single-sample analyses revealed mutations associated with clonal hematopoiesis with low VAFs (2.2-5.5%) in T cells in 4 (23.5%) patients. Three patients had DNMT3A mutations and one patient 4 distinct TET2 mutations (2 nonsense-, 1 frameshift-, and 1 missense mutations). CD4+ and CD8+ T-cell receptor (TCR) repertoires were profiled with deep TCR beta chain (TCRB) sequencing. Healthy controls' CD4+ and CD8+ cells (n=27) were used as comparators. Although some CVID patients harbor major (17-20% of CD8+) T-cell clones, overall CD4+ or CD8+ clonality did not significantly differ from age-matched healthy controls. As a marker of selective pressure, CVID patients' CD4+ and CD8+ cells harbored more clones that shared a CDR3 amino-acid but had distinct nucleotide CDR3 sequences than healthy controls (7.0% vs 3.3% of all amino-acid rearrangements, p=0.021 for CD8+; 4.3% vs 3.5% p=0.013 for CD4+). These TCRs were not enriched with pathogen-specific (such as cytomegalovirus or Epstein-Barr virus) TCRs. Moreover, high CD4+ clonality was associated with a lower frequency of switched-memory-B cells. In conclusion, somatic mutations in T cells occurred in 59% of patients with immunodeficiency in this study, and some of the mutated genes (such as STAT5B) have previously been implicated for the pathogenesis of autoimmunity and lymphoproliferation. Also, clonal hematopoiesis in T cells was discovered in 23.5% of patients. The overall T-cell clonality was not increased, but CVID patients showed slight selective pressure in the TCR repertoire. Our results demonstrate that further research on somatic mutations in immunodeficiencies is needed, as they may contribute to disease pathogenesis in a subset of immunodeficiency patients. Disclosures Martelius: Gilead: Other: lecture fee; Octapharma: Other: travel grant; CSL Behring: Other: lecture fee and travel grant; MSD: Other: lecture fee and travel grant; Sanguin: Other: travel grant and grants. Kankainen:Medix Biochemica: Consultancy. Seppänen:CSL Behring: Other: Chairing and speaker fees. Mustjoki:Ariad: Research Funding; Pfizer: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Celgene: Honoraria; Novartis: Honoraria, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-11-29
    Description: Immunotherapy is a promising approach to improve treatment responses in hematological malignancies. Accumulating evidence suggests a role for natural killer (NK) cells in controlling hematological malignancies. However, mechanisms regulating sensitivity or resistance of hematologic cancer cells to the effector function of NK cells are incompletely understood. Here, we performed genome-scale CRISPR-Cas9 loss-of-function screens to systematically map genes that regulate sensitivity of hematologic malignancies to NK cells. To screen for genes involved in the interaction between NK and cancer cells, we infected human cancer cells expressing Cas9 with a genome-scale lentiviral guide RNA library (Figure). The resulting pool of knockout cells was exposed to NK cells expanded from peripheral blood of healthy donors. Enriched and depleted knockouts were detected by next-generation sequencing of the integrated sgRNA cassettes, enabling identification of genes conferring resistance or susceptibility to NK cell-mediated lysis. The screens were performed in cell lines from diverse hematological malignancies, including chronic myeloid leukemia (CML), B cell acute lymphoblastic leukemia, diffuse large B cell lymphoma (DLBCL), and multiple myeloma. We recovered several known mechanisms of NK cell/cancer cell interactions, demonstrating feasibility of the screening approach. Loss of genes encoding components of the MHC class I complex (B2M, HLA-A, HLA-C, HLA-E) sensitized multiple cancer cell lines to NK cell lysis, consistent with missing-self recognition. Furthermore, knockout of IFN-JAK-STAT signaling mediators led to increased tumor cell lysis, suggesting that MHC class I induction in response to NK cell-derived IFN gamma enables NK cell evasion by tumor cells. We also identified genes essential for effective NK cell-mediated lysis. NCR3LG1, encoding the B7-H6 ligand for the NKp30 activating NK cell receptor, was essential for NK cell lysis of CML cells. In contrast, knockout of apoptotic mediators and TRAIL pathway components conferred resistance to NK cell cytotoxicity in DLBCL cells, indicating heterogeneity in NK cell/cancer cell interactions between cancer types. Our data support a view that distinct mechanisms regulate sensitivity to NK cell cytotoxicity in different hematologic cancers. Importantly, our results indicate that loss-of-function mutations in the antigen-presenting machinery and the IFN-JAK-STAT pathway sensitize tumors to NK cell effector function. As alterations in these genes are associated with resistance to T cell immunotherapies such as PD-1 blockade, NK cell-based therapies could be employed to overcome resistance in these patients. In summary, we suggest that systematic identification of mechanisms governing tumor immune susceptibility has the potential to uncover novel immunotherapy targets. Figure. Figure. Disclosures Kankainen: Medix Biochemica: Consultancy. Lee:Merck, Sharp, and Dohme: Consultancy; Courier Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; CytoSen Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding. Mustjoki:Pfizer: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Celgene: Honoraria; Ariad: Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-27
    Description: Chimeric antigen receptor (CAR) T-cell therapy has proven effective in relapsed and refractory B-cell malignancies, but resistance and relapses still occur. Better understanding of mechanisms influencing CAR T-cell cytotoxicity and the potential for modulation using small-molecule drugs could improve current immunotherapies. Here, we systematically investigated druggable mechanisms of CAR T-cell cytotoxicity using 〉500 small-molecule drugs and genome-scale CRISPR-Cas9 loss-of-function screens. We identified several tyrosine kinase inhibitors that inhibit CAR T-cell cytotoxicity by impairing T-cell signaling transcriptional activity. In contrast, the apoptotic modulator drugs SMAC mimetics sensitized B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma cells to anti-CD19 CAR T cells. CRISPR screens identified death receptor signaling through FADD and TNFRSF10B (TRAIL-R2) as a key mediator of CAR T-cell cytotoxicity and elucidated the RIPK1-dependent mechanism of sensitization by SMAC mimetics. Death receptor expression varied across genetic subtypes of B-cell malignancies, suggesting a link between mechanisms of CAR T-cell cytotoxicity and cancer genetics. These results implicate death receptor signaling as an important mediator of cancer cell sensitivity to CAR T-cell cytotoxicity, with potential for pharmacological targeting to enhance cancer immunotherapy. The screening data provide a resource of immunomodulatory properties of cancer drugs and genetic mechanisms influencing CAR T-cell cytotoxicity.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-30
    Description: Key Points Somatic mutations were discovered for the first time in the SH2 domain of the STAT5b gene in LGL leukemia. The mutations are activating and lead to increased phosphorylation and transcriptional activity of STAT5b.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...