ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-01-01
    Print ISSN: 1085-9195
    Electronic ISSN: 1559-0283
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-04
    Description: Emerging evidence indicates that l-glutamine (Gln) plays a fundamental role in cardiovascular physiology and pathology. By serving as a substrate for the synthesis of DNA, ATP, proteins, and lipids, Gln drives critical processes in vascular cells, including proliferation, migration, apoptosis, senescence, and extracellular matrix deposition. Furthermore, Gln exerts potent antioxidant and anti-inflammatory effects in the circulation by inducing the expression of heme oxygenase-1, heat shock proteins, and glutathione. Gln also promotes cardiovascular health by serving as an l-arginine precursor to optimize nitric oxide synthesis. Importantly, Gln mitigates numerous risk factors for cardiovascular disease, such as hypertension, hyperlipidemia, glucose intolerance, obesity, and diabetes. Many studies demonstrate that Gln supplementation protects against cardiometabolic disease, ischemia-reperfusion injury, sickle cell disease, cardiac injury by inimical stimuli, and may be beneficial in patients with heart failure. However, excessive shunting of Gln to the Krebs cycle can precipitate aberrant angiogenic responses and the development of pulmonary arterial hypertension. In these instances, therapeutic targeting of the enzymes involved in glutaminolysis such as glutaminase-1, Gln synthetase, glutamate dehydrogenase, and amino acid transaminase has shown promise in preclinical models. Future translation studies employing Gln delivery approaches and/or glutaminolysis inhibitors will determine the success of targeting Gln in cardiovascular disease.
    Electronic ISSN: 2072-6643
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-11-15
    Description: We reported previously that homocysteine (Hcy) inhibits endothelial cell (EC) growth by transcriptional inhibition of the cyclin A gene via a hypomethylation-related mechanism. In this study, we examined the effect of Hcy on epigenetic modification of the cyclin A gene and its biologic role in human ECs. Cyclin A mRNA levels were significantly suppressed by Hcy and a DNA methyltransferase inhibitor. The cyclin A promoter contains a CpG island spanning a 477-bp region (−277/200). Bisulfite sequencing followed by polymerase chain reaction (PCR) amplification of the cyclin A promoter (−267/37) showed that Hcy eliminated methylation at 2 CpG sites in the cyclin A promoter, one of which is located on the cycle-dependent element (CDE). Mutation of CG sequence on the CDE leads to a 6-fold increase in promoter activity. Hcy inhibited DNA methyltransferase 1 (DNMT1) activity by 30%, and reduced the binding of methyl CpG binding protein 2 (MeCP2) and increased the bindings of acetylated histone H3 and H4 in the cyclin A promoter. Finally, adenovirus-transduced DNMT1 gene expression reversed the inhibitory effect of Hcy on cyclin A expression and EC growth inhibition. In conclusion, Hcy inhibits cyclin A transcription and cell growth by inhibiting DNA methylation through suppression of DNMT1 in ECs.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-11-16
    Description: Hyperhomocysteinemia is a significant and independent risk factor for cardiovascular disease. We reported previously that homocysteine (Hcy) inhibits endothelial cell (EC) growth by transcriptional inhibition of the cyclin A gene. This is associated with an increase in S-adenosylhomocysteine, a potent inhibitor of methyltransferase. We hypothesized that Hcy inhibits EC growth and cyclin A transcription via hypomethylation and studied the effect of Hcy on epigenetic regulation of the cyclin A gene in EC. We found that the levels of cyclin A mRNA were significantly suppressed by azacytidne (AZC), a potent DNA methyl transferase (DNMT) inhibitor, in human umbilical vein EC (HUVEC). The cyclin A promoter (−518/256) is rich in GC content (59.1%), and has a CpG island spanning a 477 bp region (−277/200). Bisulphite sequencing followed by PCR amplification of the cyclin A core (−267/37) promoter, which contains 23 CpG sites serving as potential methylation sites, showed that Hcy (50 mM) eliminated methylation at two CpG sites, position 1 and 35, in the cyclin A promoter. Hcy selectively inhibited the activity of DNA methyl transferase 1 (DNMT1) by 40%, and had no effect on DNA methyl transferase 3 (DNMT3) activity in HUVEC. Furthermore, chromatin immunoprecipitation (ChIP) assays demonstrated that Hcy reduced the binding of methyl CpG binding protein 2 (MeCP2) and increased the binding of acetylated histone H3 and H4 in the cyclin A promoter in HUVEC but not in human aortic smooth muscle cells. The binding of MeCP2 to the cyclin A promoter was completely suppressed by AZC and trichostatin A, a histone deacetylase (HDAC) inhibitor, indicating that HDAC and DNA methylation mediate MeCP2 binding to cyclin A promoter. Finally, adenovirus tranduced DNMT1 overexpression, but not DNMT3, reversed Hcy-induced growth inhibition. In conclusion, we found that Hcy inhibits EC growth by suppressing cyclin A transcription, and that Hcy exerts this action by inhibiting DNA methylation through the suppression of DNMT1 and HDAC activity.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-02-01
    Description: Previously, it was reported that homocysteine (Hcy) specifically inhibits the growth of endothelial cells (ECs), suppresses Ras/mitogen-activated protein (MAP) signaling, and arrests cell growth at the G1/S transition of the cell cycle. The present study investigated the molecular mechanisms underlying this cell-cycle effect. Results showed that clinically relevant concentrations (50 μM) of Hcy significantly inhibited the expression of cyclin A messenger RNA (mRNA) in ECs in a dose- and time-dependent manner. G1/S-associated molecules that might account for this block were not changed, because Hcy did not affect mRNA and protein expression of cyclin D1 and cyclin E. Cyclin D1- and E-associated kinase activities were unchanged. In contrast, cyclin A–associated kinase activity and CDK2 kinase activity were markedly suppressed. Nuclear run-on assay demonstrated that Hcy decreased the transcription rate of the cyclin A gene but had no effect on the half-life of cyclin A mRNA. In transient transfection experiments, Hcy significantly inhibited cyclin A promoter activity in endothelial cells, but not in vascular smooth muscle cells. Finally, adenovirus-transduced cyclin A expression restored EC growth inhibition and overcame the S phase block imposed by Hcy. Taken together, these findings indicate that cyclin A is a critical functional target of Hcy-mediated EC growth inhibition.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-05-15
    Description: Although hyperhomocysteinemia is an independent risk factor for cardiovascular disease, a direct role for homocysteine (Hcy) in this disease remains to be shown. Whereas diet-induced hyperhomocysteinemia promotes atherosclerosis in animal models, the effects of Hcy on atherogenesis in the absence of dietary perturbations is not known. We have generated double knock-out mice with targeted deletions of the genes for apolipoprotein E (apoE) and cystathionine β-synthase (CBS), which converts Hcy to cystathionine. ApoE−/−/CBS−/− mice developed aortic lesions even in the absence of dietary manipulation; lesion area and lesion cholesteryl ester (CE) and triglyceride (TG) contents increased with animal age and plasma Hcy levels. Plasma total cholesterol was significantly increased, whereas high density lipoprotein (HDL) cholesterol and TG concentrations of apoE−/−/CBS−/− mice were decreased. Cholesterol esterification and activities of enzymes catalyzing CE or TG formation in the vessel wall and in peritoneal macrophages were not changed by hyperhomocysteinemia. However, uptake of human acetyl-LDL, but not native low density lipoprotein (LDL), by mouse peritoneal macrophages was higher in the presence of hyperhomocysteinemia. These results suggest that isolated hyperhomocysteinemia is atherogenic and alters hepatic and macrophage lipoprotein metabolism, in part, by enhancing uptake of modified LDL.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-18
    Description: Hyperhomocysteinemia (HHcy) is associated with endothelial dysfunction (ED), but the mechanism is largely unknown. In this study, we investigated the role and mechanism of HHcy-induced ED in microvasculature in our newly established mouse model of severe HHcy (plasma total homocysteine, 169.5μM). We found that severe HHcy impaired nitric oxide (NO)– and endothelium-derived hyperpolarizing factor (EDHF)–mediated, endothelium-dependent relaxations of small mesenteric arteries (SMAs). Endothelium-independent and prostacyclin-mediated endothelium-dependent relaxations were not changed. A nonselective Ca2+-activated potassium channel (KCa) inhibitor completely blocked EDHF-mediated relaxation. Selective blockers for small-conductance KCa (SK) or intermediate-conductance KCa (IK) failed to inhibit EDHF-mediated relaxation in HHcy mice. HHcy increased the levels of SK3 and IK1 protein, superoxide (O2−), and 3-nitrotyrosine in the endothelium of SMAs. Preincubation with antioxidants and peroxynitrite (ONOO−) inhibitors improved endothelium-dependent and EDHF-mediated relaxations and decreased O2− production in SMAs from HHcy mice. Further, EDHF-mediated relaxation was inhibited by ONOO− and prevented by catalase in the control mice. Finally, L-homocysteine stimulated O2− production, which was reversed by antioxidants, and increased SK/IK protein levels and tyrosine nitration in cultured human cardiac microvascular endothelial cells. Our results suggest that HHcy impairs EDHF relaxation in SMAs by inhibiting SK/IK activities via oxidation- and tyrosine nitration–related mechanisms.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2002-02-01
    Description: Previously, it was reported that homocysteine (Hcy) specifically inhibits the growth of endothelial cells (ECs), suppresses Ras/mitogen-activated protein (MAP) signaling, and arrests cell growth at the G1/S transition of the cell cycle. The present study investigated the molecular mechanisms underlying this cell-cycle effect. Results showed that clinically relevant concentrations (50 μM) of Hcy significantly inhibited the expression of cyclin A messenger RNA (mRNA) in ECs in a dose- and time-dependent manner. G1/S-associated molecules that might account for this block were not changed, because Hcy did not affect mRNA and protein expression of cyclin D1 and cyclin E. Cyclin D1- and E-associated kinase activities were unchanged. In contrast, cyclin A–associated kinase activity and CDK2 kinase activity were markedly suppressed. Nuclear run-on assay demonstrated that Hcy decreased the transcription rate of the cyclin A gene but had no effect on the half-life of cyclin A mRNA. In transient transfection experiments, Hcy significantly inhibited cyclin A promoter activity in endothelial cells, but not in vascular smooth muscle cells. Finally, adenovirus-transduced cyclin A expression restored EC growth inhibition and overcame the S phase block imposed by Hcy. Taken together, these findings indicate that cyclin A is a critical functional target of Hcy-mediated EC growth inhibition.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2002-06-15
    Description: Vascular smooth muscle cells (SMCs) generate carbon monoxide (CO) via the catabolism of heme by the enzyme heme oxygenase (HO). In the present study, we found that serum stimulated a time- and concentration-dependent increase in the levels of HO-1 messenger RNA (mRNA) and protein in vascular SMCs. The induction of HO-1 expression by serum was inhibited by actinomycin D or cycloheximide. In addition, serum stimulated HO activity, as reflected by an increase in the concentration of bilirubin in the culture media. Treatment of vascular SMCs with serum stimulated DNA synthesis and this was potentiated by the HO inhibitors, zinc and tin protoporphyrin-IX as well as by the CO scavenger, hemoglobin. The iron chelator desferrioxamine had no effect on DNA synthesis. However, exposure of vascular SMCs to exogenous CO inhibited serum-stimulated SMC proliferation and the phosphorylation of retinoblastoma protein. In addition, CO arrested SMCs at the G1/S transition phase of the cell cycle and selectively blocked the serum-stimulated expression of cyclin A mRNA and protein without affecting the expression of cyclin D1 and E. CO also inhibited the serum-stimulated activation of cyclin A–associated kinase activity and cyclin-dependent kinase 2 activity. These results demonstrate that serum stimulates HO-1 gene expression and CO synthesis. Furthermore, they show that CO acts in a negative feedback fashion to inhibit vascular SMC growth by regulating specific components of the cell cycle machinery. The capacity of vascular mitogens to induce CO synthesis may provide a novel mechanism by which these agents modulate cell growth.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-11-16
    Description: Increased levels of plasma homocysteine is an independent risk factor for cardiovascular disease and has cell-type distinct proatherosclerotic effects on vascular cells. In this study, we characterized L- homocysteine transport in cultured human aortic endothelial and aortic smooth muscle cells. L-homocysteine was transported into vascular cells in a time-dependent fashion. L-homocysteine transport activity was about 2-fold higher in aortic smooth muscle cells. In addition, L-homocysteine transport in both cell types was mediated by sodium-dependent and independent carrier systems. Competition studies revealed that the neutral amino acids cysteine, glycine, serine, tyrosine, alanine, leucine, and methionine, and inhibitors of the cysteine transport systems inhibited L-homocysteine uptake in both cell types, but the inhibition was greater in endothelial cells. Eadie-Hofstee plots demonstrated that L-Hcy transport in endothelial cells had a Michaelis constant (Km) of 79mM and a maximum transport velocity (Vmax) of 873 pmol/mg protein/min. In contrast, homocysteine transport in aortic smooth muscle cells had a lower affinity (Km=212mM) but a higher transport capacity (Vmax=4192 pmol/mg protein/min). Interestingly, increases in pH (pH 6.5–8.2) only inhibited L-homocysteine uptake in endothelial cells. Moreover, L-homocysteine transport in endothelial cells was partially inhibited by lysosomal inhibitors. Our studies indicate that L-homocysteine shares transporter systems with cysteine and can be inhibited for transport by multiple neutral amino acids in vascular cells, and that L-homocysteine transport involves lysosomal transport in endothelial cells. The specific lysosomic feature of L-homocystein transport in endothelial cells may contribute to cell type specific growth inhibitory effects and therefore play a role in homocysteine atherogenic potential.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...