ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 31 (1994), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 〈list xml:id="l1" style="custom"〉1Methods used for the study of species–environment relationships can be grouped into: (i) simple indirect and direct gradient analysis and multivariate direct gradient analysis (e.g. canonical correspondence analysis), all of which search for non-symmetric patterns between environmental data sets and species data sets; and (ii) analysis of juxtaposed tables, canonical correlation analysis, and intertable ordination, which examine species–environment relationships by considering each data set equally. Different analytical techniques are appropriate for fulfilling different objectives.2We propose a method, co-inertia analysis, that can synthesize various approaches encountered in the ecological literature. Co-inertia analysis is based on the mathematically coherent Euclidean model and can be universally reproduced (i.e. independently of software) because of its numerical stability. The method performs simultaneous analysis of two tables. The optimizing criterion in co-inertia analysis is that the resulting sample scores (environmental scores and faunistic scores) are the most covariant. Such analysis is particularly suitable for the simultaneous detection of faunistic and environmental features in studies of ecosystem structure.3The method was demonstrated using faunistic and environmental data from Friday (Freshwater Biology 18, 87-104, 1987). In this example, non-symmetric analyses is inappropriate because of the large number of variables (species and environmental variables) compared with the small number of samples.4Co-inertia analysis is an extension of the analysis of cross tables previously attempted by others. It serves as a general method to relate any kinds of data set, using any kinds of standard analysis (e.g. principal components analysis, correspondence analysis, multiple correspondence analysis) or between-class and within-class analyses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: SUMMARY 1. We analysed an existing database of macroinvertebrates and fish in the context of a newly established geographical information system (GIS) of physical features to determine the relationships between stream community composition and physical factors measured at three landscape scales – catchment, reach and bedform. Both an exploratory (concordance analysis) and a predictive (ausrivas) approach were used.2. The environmental variables that most successfully accounted for variation in macroinvertebrate assemblages were mainly ‘natural’ and at the catchment-scale (relief ratio, basin diameter, etc.) but the human-induced physical setting of percentage of pasture in the riparian zone was also influential. For fish, ‘natural’ variables were also dominant, but these were mostly at the bedform or reach scales and land use featured strongly.3. Geographic location accounted for some of the variation in invertebrate assemblages, partly because geography and influential conditions/resources are correlated but also because different species may have evolved in different places and have not colonised every ‘ecologically appropriate’ location. Geographic location was not influential in accounting for variation in assemblages of strongly flying invertebrates, supporting the hypothesis that organisms having high dispersal potential can be expected to break down geographic barriers more readily than those with poor dispersal powers. In accord with what is known about the local evolution and restricted distributions of native and exotic species, history (reflected in geography) appeared to account for some variation in fish assemblages.4. Given their different mathematical bases, the fact that exploratory and predictive analyses yielded similar results provides added confidence to our conclusions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Freshwater biology 48 (2003), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. Longitudinal changes in physicochemical factors and the composition of the invertebrate community were examined in the hyporheic zone of a glacial river (Val Roseg, Switzerland) over a distance of 11 km from the glacier terminus. Multivariate analysis was used to determine the habitat preferences of taxa along an upstream-downstream gradient of increasing temperature and groundwater contribution to river flow.2. The hyporheos conformed to the longitudinal distribution model described for zoobenthic communities of glacial rivers in that taxonomic richness increased with distance from the glacier terminus. Spatial variation in taxonomic richness was best explained by temperature, the influence of groundwater, and the amount of organic matter. The overriding importance of these variables on the distribution of taxa was confirmed by the multivariate analysis.3. The hyporheic zone contributed significantly to the overall biodiversity of the Roseg River. Whereas insect larvae were predominant in the benthos, hyporheic invertebrates were dominated by taxa belonging to the true groundwater fauna and the permanent hyporheos. Several permanently aquatic taxa (e.g. Nematoda, Ostracoda, Cyclopoida, Harpacticoida, Oligochaeta) appeared exclusively in the hyporheic zone or they extended farther upstream in the hyporheic layer than in the benthic layer. Leuctridae, Nemouridae, and Heptageniidae colonised hyporheic sediments where maximum water temperature was only 4 °C.4. Despite strong seasonal changes in river discharge and physicochemistry in hyporheic water, the density and distribution of the hyporheos varied little over time.5. Taxonomic richness increased markedly in the downstream part of a floodplain reach with an extensive upwelling zone. Upwelling groundwater not only maintained a permanent flow of water but also created several species-rich habitats that added many species to the community of the main channel.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. Multiple biological invertebrate traits (e.g. body size, body form, dispersal potential) each described through multiple categories (e.g. small, intermediate or large body size) could serve as indicators of particular types of human impacts on large rivers. The trait composition of natural invertebrate communities is scarcely constrained by taxonomic differences among them, i.e. individual trait categories could be used to discriminate various types of human impacts across large geographic areas, which would require the definition of trait patterns for conditions of relatively low human impact.2. Using large databases to link 14 biological traits (described through 66 categories) of invertebrate genera to their occurrence in running water reaches with known environmental conditions, we examined the accuracy of various approaches to predict expected trait variation across least impacted river reaches (LIRRs) of Europe in a stepwise analytical procedure. This procedure included Monte Carlo simulations and ultimately the assignment of test-LIRRs (reaches not used in previous analyses) to the previously defined LIRR conditions.3. Distance from the source was an integrative variable capturing some (but not all) landscape features (e.g. altitude) or habitat variables (e.g. reach shear stress). Correspondingly, the relative abundance of many trait categories changed along 13 European running waters, although particularly the intensity of these changes differed among these 13 running waters.4. ‘Downstream models’ (using only distance from the source as predictor) provided the least accurate predictions of expected invertebrate trait patterns when compared with ‘landscape models’ (using distance from the source in combination with altitude and/or latitude) or ‘habitat models’ (using reach shear stress, mean annual air temperature and/or pH of the water). Landscape models provided more accurate predictions than habitat models, but the improvement of predictions of expected invertebrate traits patterns obtained using landscape models was negligible in comparison with a simpler ‘mean-model’ approach, suggesting that defining LIRR conditions through simple descriptions of frequency distributions would be sufficient for the future biomonitoring of large European rivers.5. To define these LIRR conditions, we used the average of the relative abundance of each trait category from 68 LIRRs (≥40 m wide) as expected LIRR values, and computed LIRR frequency distributions that described the deviations of the 68 individual LIRRs from these expected values. Computing such deviations from the expected LIRR values for 57 test-LIRRs (also ≥40 m wide), 57 trait categories correctly assigned 〉90% of the test-LIRRs to LIRR conditions if the latter were defined through the entire range of the LIRR frequency distributions. To the 90%-range enveloped by the LIRR frequency distributions, 42 trait categories correctly assigned 〉80% and 12 categories 〉90% of the test-LIRRs.6. Using a framework that required no regionalisation of a large geographic area, no modelling of expected values using environmental information and no standardised invertebrate sampling, the performance of our trait approach to assign test-LIRRs to LIRR conditions encourages future assessments of deviations from these defined LIRR conditions in large European river reaches with different types of human impacts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 〈list xml:id="l1" style="custom"〉1Ostracods occurring at two sections of the Upper Rhône River, France, were examined to determine relationships among species traits, habitat utilization, the relationship between species traits and habitat utilization, and trends in species traits and species richness in the context of spatial and temporal variability of habitats. Twenty regularly sampled species were used in this study and fifteen species traits were considered.2Throe groups can be distinguished according to their species traits: group 1 has species of mixed sizes with high reproductive rates, short life span, spherical shape, long swimming bristles, low thigmotactism, and high resistance to desiccation; group 2 has medium-sized species with low reproductive rates, long life span, low or no tolerance to desiccation, geometric (trapezoidal, triangular) or streamlined carapace shape, no swimming bristles, and a strong thigmotactism; group 3 has the largest species with parthenogenetic reproduction, medium-sized swimming bristles, and flattened or cylindric carapace shape.3Ostracod habitat utilization segregates the superficial and interstitial habitats along a gradient from the main channel to the abandoned arms and to the temporary waters.4The co-structure (= relationship) between species traits and habitat utilization indicates that the species use particular habitats with a particular set of species trait modalities. Species with long life spans, late maturity, low fecundity, and low migratory ability are restricted to the interstitial habitats; the epigean species with long life spans, large size, and parental care are more abundant in permanent flowing and standing surface waters; the epigean species with short life spans, high migratory ability, and high tolerance to desiccation are more abundant in temporary ponds.5The analyses of the distribution of the species traits in a river habitat templet of spatial and temporal variability emphasized that the main disturbance structuring the Rhône River ostracod assemblage is desiccation.6Of the trends predicted for species traits in the framework of the river habitat templet, five (size, body form, attachment, reproductive technique, and mobility) are clearly opposite for ostracods (because the predictions were mainly established for flood-related disturbances) but four (life span, number of reproductive cycles per year, age at first reproduction, and desiccation tolerance) are in agreement.7No trends in ostracod species richness in the framework of spatial–temporal habitat variability were evident.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 31 (1994), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 〈list xml:id="l1" style="custom"〉1For practical reasons, conceptual developments in community ecology are usually based on studies of a restricted systematic group. The cooperation of thirty or so specialists in the synthesis of long-term ecological research on the Upper Rhône River, France, provided a unique occasion to investigate relationships among species traits, the habitat utilization by species, the relationship between species traits and habitat utilization, and trends of species traits and species richness in the framework of spatial-temporal habitat variability for 548 species of plants (Hyphomycetes, aquatic macrophytes, floodplain vegetation) and animals (Tricladida, Oligochaeta, several groups of Crustacea, Insecta and Vertebrata).2Using correspondence analysis, 100 modalities of eighteen species traits were examined; the resulting typology demonstrates that systematic groups are the most important elements for separating species traits such as size, fecundity of individuals, parental care, mobility, body form, and food type. Small species have an intermediate number of descendants per reproductive cycle and few reproductive cycles both per year and per individual; in contrast, large species have a high number of descendants per reproductive cycle and few reproductive cycles per year but many potential reproductive cycles per individual.3The analysis of habitat utilization in the Upper Rhône River and its floodplain by the 548 species demonstrated a vertical gradient separating interstitial from superficial habitats; a transverse gradient for superficial habitats from the main channel towards more terrestrial ones is also evident.4Because of a significant (P 〈 0.01) relationship between species traits and habitat utilization, traits such as size, fecundity of individuals, parental care, tolerance to variation in humidity, and respiration are arranged along the vertical and transverse habitat gradient. Size, the number of reproductive cycles per individual, and the tolerance to variation of humidity increases from permanent waters to temporary waters, aggrading habitats, and terrestrial habitats.5Species traits showed significant (P 〈 0.01) trends in the framework of spatial-temporal habitat variability and were compared with predictions based on the river habitat templet. Although each habitat showed a mixture of species traits at low temporal and spatial variability, and at high variability sites, trends corresponded to predictions for three traits (number of descendants per reproductive cycle, number of reproductive cycles per individual, attachment to soil or substrate) along a gradient of increasing temporal habitat variability.6The species richness of each habitat within the Upper Rhône River and its floodplain significantly (P = 0.03) increased as the spatial variability of habitats increased but there is no statistical correlation between spedes richness and temporal variability. An altemative hypothesis predicting that fewer spedes per resource occur in temporally stable habitats is also not supported.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. Studies on biodiversity and ecosystem function require considering metrics for accurately describing the functional diversity of communities. The number of taxa (richness) is commonly used to characterise biological diversity. The disadvantage of richness as a measure of biological diversity is that all taxa are taken into account on an equal basis regardless of their abundance, their biological characteristics or their function in the ecosystem.2. To circumvent this problem, we applied a recently described measure of biological diversity that incorporates dissimilarities among taxa. Dissimilarities were defined from biological traits (e.g. life history, morphology, physiology and behaviour) of stream invertebrate taxa and the resulting biological diversity index was considered as a surrogate for functional diversity.3. As sampling effort is known to affect the number of taxa collected within a reach, we investigated how change in functional diversity is affected by sampling effort. We used stream invertebrate community data from three large European rivers to model accumulation curves and to assess the number of samples required to estimate (i.e. closeness to the maximal value) functional diversity and genera richness. We further evaluated the precision of estimates (i.e. similarity of temporal or spatial replicates) of the total functional diversity.4. As expected, richness estimates were strongly dependent on sampling effort, and 10 replicate samples were found to underestimate actual richness. Moreover, richness estimates showed much variation with season and location. In contrast, functional diversity had greater accuracy with less sampling effort and the precision of the estimates was higher than richness both across sampling occasions and sampling reaches. These results are further arguments towards conducting research on the design of a biomonitoring tool based on biological traits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Freshwater biology 37 (1997), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. The habitat templet approach depends on defining templet axes appropriate to the organism(s) of interest, predicting the traits of species associated with different parts of the templet, and testing these predictions in a range of habitats whose positions in the templet have been determined.2. In this study of thirty-five benthic insect taxa at fifty-four tributary sites of the Taieri River on the South Island of New Zealand, we chose as the temporal axis the intensity/frequency of disturbance, defined in terms of bed movement during high discharge events. As the spatial axis, we postulated that three features would provide refugia and therefore ameliorate disturbance—percentage of the bed with low shear stress, percentage of the bed made up of large substratum particles and availability of interstitial space in the bed—from which we derived a combined multivariate refugium axis.3. More disturbed communities contained a significantly higher percentage of individuals possessing the following traits: small size, high adult mobility, habitat generalist (each predicted to confer resilience in response to disturbance), clinger, streamlined/flattened and with two or more life stages outside the stream (each predicted to confer resistance in the face of disturbance). When analyses were performed on the percentage of taxa having particular traits, the predicted positive relationships with average bed movement were found for high adult mobility and habitat generalist traits.4. The percentage of variance in trait scores explained by intensity of disturbance was generally higher in sites with less refugia available and lower in sites further from the headwaters. The percentage of variance explained was higher in sites recently subject to a major high discharge disturbance, suggesting that disturbances tend to strengthen the pattern of preponderance of resilience/resistance traits.5. We mapped insect taxa onto the two-dimensional templet, following Grime et al.’s triangular terrestrial plant classification. The full variety of resistance and resilience traits were represented in insect species throughout the templet, but taxa associated with more disturbed conditions generally displayed a larger number of resilience and resistance traits, combined, than taxa associated with more stable stream beds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 42 (1999), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. Current budgets for environmental management are high, tend to increase, and are used to support policy and legislation which is standardized for large geographic units. Therefore, the search for tools to monitor the effects of this investment is a major issue in applied ecology. Ideally, such a biomonitoring tool should: (1) be as general as possible with respect to its geographic application; (2) be as specific as possible by separating different types of human impact on a given ecosystem; (3) reliably indicate changes in human impact of a particular type; and (4) be derived from a sound theoretical concept in ecology.2. We developed an approach to biomonitoring which matches these ‘ideal’ characteristics by focusing on numerous, general biological species traits (e.g. size, number of descendants per reproductive cycle, parental care, mobility) and on the habitat templet concept, which relates trends in these general species traits to disturbance patterns. Using the French Rhône River and benthic macroinvertebrates as an example, we have used the data to demonstrate a general framework and the potential of our approach rather than to produce a ready-made tool. Our data covered a large river and its major tributaries, which has a catchment that crosses ecoregions, and known gradients and discontinuities in human impact.3. We applied multivariate analyses to evaluate how the distribution of species traits in invertebrate communities could discriminate environmental differences along the Rhône in comparison to traditionally used approaches (e.g. community structure, based on species abundances, or ecological species traits, such as velocity preferences and pollution tolerance). Invertebrate community structure expressed in terms either of the abundance or the traits of species reliably indicated differences in overall human impact. The community structure based on biological traits was less confounded by natural spatial gradients and reliably indicated human impact, while community structure based on ecological traits was the most confounded by natural spatial gradients and was the poorest indicator of human impact. Community structure based on species abundances was an intermediate indicator of human impact.4. These results indicate that a revision of biomonitoring approaches which have been based on a single aspect of the biological responses may be warranted. The biological traits of species could separate the different types of human impact. Therefore, the use of these traits in biomonitoring could improve existing multi-metric approaches. Future research has to show if the general applicability of species traits allows the development of a unique biomonitoring tool for running waters of the European Union, for running waters in temperate climates on several continents, for freshwater, marine and terrestrial systems, and/or for global biodiversity assessment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Freshwater biology 46 (2001), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. Ecological theory predicts that (1) proportions of fish having particular life history strategies should vary with habitat conditions, and (2) biological traits of species should change across spatio-temporal variability gradients (River Habitat Templet).2. We used data on juvenile fish and biological traits of the species, temporal (i.e. hydrology) and spatial (e.g. depth, bottom substrate, litter type) habitat variability and state (i.e. mean conditions) to test these predictions for communities comprising 57 fish taxa in floodplain creeks of the Sinnamary River (French Guiana).3. We did not confirm predictions on habitat use according to groupings based on life history strategies. However, we found 10 significant relationships between species traits and habitat variability (e.g. size at maturity, diameter of mature oocytes, parental care and relative body height decreased with increasing temporal variability; size at maturity and mean diameter of mature oocytes increased with increasing spatial variability). In addition, state variables such as mean water level, dissolved oxygen, mean width or mean depth could explain much of the variation in species traits.4. Thus, our results generally supported the River Habitat Templet but suggested that state, in addition to variability, should be included in habitat descriptions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...