ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-03-29
    Description: ZBTB transcription factors orchestrate gene transcription during tissue development. However, their roles in glioblastoma (GBM) remain unexplored. Here, through a functional screening of ZBTB genes, we identify that BCL6 is required for GBM cell viability and that BCL6 overexpression is associated with worse prognosis. In a somatic transgenic mouse model, depletion of Bcl6 inhibits the progression of KrasG12V-driven high-grade glioma. Transcriptome analysis demonstrates the involvement of BCL6 in tumor protein p53 (TP53), erythroblastic leukemia viral oncogene homolog (ErbB), and MAPK signaling pathways. Indeed, BCL6 represses the expression of wild-type p53 and its target genes in GBM cells. Knockdown of BCL6 augments the activation of TP53 pathway in response to radiation. Importantly, we discover that receptor tyrosine kinase AXL is a transcriptional target of BCL6 in GBM and mediates partially the regulatory effects of BCL6 on both MEK-ERK (mitogen-activated protein/extracellular signal-regulated kinase kinase–extracellular signal-regulated kinase) and S6K-RPS6 (ribosomal protein S6 kinase–ribosomal protein S6) axes. Similar to BCL6 silencing, depletion of AXL profoundly attenuates GBM proliferation both in vitro and in vivo. Moreover, targeted inhibition of BCL6/nuclear receptor corepressor 1 (NCoR) complex by peptidomimetic inhibitor not only significantly decreases AXL expression and the activity of MEK-ERK and S6K-RPS6 cascades but also displays a potent antiproliferative effect against GBM cells. Together, these findings uncover a glioma-promoting role of BCL6 and provide the rationale of targeting BCL6 as a potential therapeutic approach.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-15
    Description: Competitive BET bromodomain inhibitors (BBIs) targeting BET proteins (BRD2, BRD3, BRD4, and BRDT) show promising preclinical activities against brain cancers. However, the BET protein-dependent glioblastoma (GBM)-promoting transcriptional network remains elusive. Here, with mechanistic exploration of a next-generation chemical degrader of BET proteins (dBET6), we reveal a profound and consistent impact of BET proteins on E2F1- dependent transcriptional program in both differentiated GBM cells and brain tumor-initiating cells. dBET6 treatment drastically reduces BET protein genomic occupancy, RNA-Pol2 activity, and permissive chromatin marks. Subsequently, dBET6 represses the proliferation, self-renewal, and tumorigenic ability of GBM cells. Moreover, dBET6-induced degradation of BET proteins exerts superior antiproliferation effects compared to conventional BBIs and overcomes both intrinsic and acquired resistance to BBIs in GBM cells. Our study reveals crucial functions of BET proteins and provides the rationale and therapeutic merits of targeted degradation of BET proteins in GBM.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
  • 5
    Publication Date: 2012-10-18
    Description: Fms-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase with important roles in hematopoietic progenitor cell survival and proliferation. It is mutated in approximately one-third of AML patients, mostly by internal tandem duplications (ITDs). Adaptor protein Lnk is a negative regulator of hematopoietic cytokine signaling. In the present study, we show that Lnk interacts physically with both wild-type FLT3 (FLT3-WT) and FLT3-ITD through the SH2 domains. We have identified the tyrosine residues 572, 591, and 919 of FLT3 as phosphorylation sites involved in direct binding to Lnk. Lnk itself was tyrosine phosphorylated by both FLT3 ligand (FL)–activated FLT3-WT and constitutively activated FLT3-ITD. Both shRNA-mediated depletion and forced overexpression of Lnk demonstrated that activation signals emanating from both forms of FLT3 are under negative regulation by Lnk. Moreover, Lnk inhibited 32D cell proliferation driven by different FLT3 variants. Analysis of primary BM cells from Lnk-knockout mice showed that Lnk suppresses the expansion of FL-stimulated hematopoietic progenitors, including lymphoid-primed multipotent progenitors. The results of the present study show that through direct binding to FLT3, Lnk suppresses FLT3-WT/ITD–dependent signaling pathways involved in the proliferation of hematopoietic cells. Therefore, modulation of Lnk expression levels may provide a unique therapeutic approach for FLT3-ITD–associated hematopoietic disease.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-02
    Description: Pediatric ALL is the most common childhood tumor and the leading cause of childhood cancer deaths. To gain a better understanding of the landscape of somatic mutations in ALL, we performed whole exome and targeted sequencing of 240 pediatric B-ALL patients with their matched remission samples. The significantly mutated genes fall into several common categories: RAS/receptor tyrosine kinases, epigenetic regulators, transcription factors involved in lineage commitment and p53/cell cycle pathway. RAS/receptor tyrosine kinases: the most frequently mutated genes were members of RAS signaling (NRAS, KRAS, FLT3, PTPN11). Besides the well know hotspot mutations [G12D/V/C (NRAS 13 cases, KRAS 13 cases), G13D (NRAS 14 cases, KRAS 11 cases) and Q61H/L/R/K (NRAS 15 cases, KRAS 1 case)], novel mutational sites were also identified for KRAS: A146T/P (3 cases), K117N/T (4 cases) and V14I (1 case). High frequency missense mutations of PTPN11 clustered in SH2 domain (included the canonical hotspot A72T (5 cases) and E76K/V (4 cases)) and tyrosine-phosphatase catalytic domain (G503R/V). For FLT3, well-appreciated activating hotspot mutations in the kinase domain (D835Y/Y842C) and several novel recurrent mutationswere identified. Epigenetic regulators: hotspot mutations were identified in histone H3K36 methyltransferase WHSC1. Mutation E1099K located in the SET domain, was identified in 10 patients as well as two of the 5 ALL cell lines that we sequenced (RS4;11, SEM). Stable silencing of E1099K mutant WHSC1 in RS4;11 cells by either lentiviral shRNA or CRISPR guide RNA (sgRNA) markedly reduced clonogenic growth both in vitro and in vivo, underscoring the critical role of WHSC1 in lymphoid malignancies. Two highly-related histone/non-histone acetyltransferases, CREBBP and EP300, were also prominently mutated in our cohort. Mutations of CREBBP predominantly occurred in the acetyltransferase domain, particularly in the hotspot R1446C/H. Mutations of chromatin remodeling genes (ARID1A and ARID2) have been identified in a number of cases. Silencing of ARID1A in ALL cell lines by lentiviral shRNA resulted in upregulation of the pro-growth regulator c-MYC, while forced expression of ARID1A reduced c-MYC luciferase reporter activity. In addition, silencing of ARID1A by either shRNA or CRISPR-sgRNA resulted in enhanced clonogenic growth, suggesting that ARID1A may be involved in the c-MYC pathway and modulates the ALL cell proliferation. Mutations of epigenetic regulators were also found in the polycomb complex (EZH2, EED, SUZ12), chromatin/nucleosome structure modifying proteins (CHD2, CHD3, CHD4), TET family proteins [TET1 (2 cases), TET2 (5 cases)] and histone modification proteins (HDAC1, SIRT1, BCOR, BRD8, lysine demethylase PHF2/KDM6A, histone acetyltransferase KAT6B). Transcription factors and p53/cell cycle pathway: a number of alterations of transcription factors essential for hematopoietic and lymphoid differentiation were noted including the lineage regulator PAX5 (5 missense, 3 indels) and ETV6 (6 cases, 3 were frameshift indel and 1 was a splice-site mutations). In addition, mutations were also found in other lineage transcription factors (IKZF2, IKZF3, EBF1), WT1 (6 cases, including 3 indels and 1 stop-gain mutations), RUNX family member [RUNX2 (7 cases), RUNX1 (1 case)], ERG1 (3 cases), GATA1/3 (1 case each) and CTCF. Somatic mutations of genes involved in the p53 pathway occurred in 18 patients, including TP53, ATM and the kinases that regulate p53 activities (HIPK1, HIPK2). Germline TP53 pathogenic variants were found in these 2 patients. Taken together, we extensively interrogated the mutational landscape of a large cohort of pediatric ALL samples by exome and targeted resequencing. This study provides a detailed mutational portrait of pediatric ALL and gives new insights into the molecular pathogenesis of this disease. Disclosures Kantarjian: Amgen: Research Funding; ARIAD: Research Funding; Bristol-Myers Squibb: Research Funding; Pfizer Inc: Research Funding; Delta-Fly Pharma: Research Funding; Novartis: Research Funding. Ogawa:Sumitomo Dainippon Pharma: Research Funding; Kan research institute: Consultancy, Research Funding; Takeda Pharmaceuticals: Consultancy, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-11-16
    Description: Abstract 1312 Background The production and lineage commitment of hematopoietic cells is controlled by the actions of a complex network of signaling pathways. Mutations and translocations of tyrosine kinases within these pathways lead to constitutive signaling and enhanced proliferation. Classic examples are BCR-ABL in CML, Janus kinase 2 (JAK2) mutations in MPN, Fms-like tyrosine kinase 3 (FLT3) and c-KIT mutations in AML. FLT3 is a receptor tyrosine kinase with important roles in hematopoietic progenitor cell survival and proliferation. It is mutated in about 1/3 of AML patients, mostly by internal tandem duplications (ITD). Adaptor protein Lnk is expressed in hematopoietic cells and is an important negative regulator in cytokine signaling and hematopoiesis. Previously, we and others have shown that Lnk interacts with the JXM domain of c-KIT, PDGFRA, PDGFRB and FMS, all of which share a similar sequence in this domain. The fact that FLT3 harbors a conserved JXM domain prompted us to investigate whether Lnk interacts with FLT3. Methods and Results Co-immunoprecipitation and GST-pulldown assay showed that Lnk physically interacts with both wild-type FLT3 (FLT3-WT) and FLT3-ITD through its SH2 domain in multiple types of hematopoietic cells. Through affinity fishing assay with immobilized peptides, we identified the tyrosine residues 572, 591 and 919 of FLT3 as phosphorylation sites involved in direct binding to Lnk. Importantly, Lnk itself was tyrosine-phosphorylated by both FLT3 ligand (FL)-activated FLT3-WT and constitutively activated FLT3-ITD. Functionally, both shRNA-mediated depletion and ectopic expression of Lnk demonstrated that activation signals emanating from both forms of FLT3 are under negative regulation by Lnk. Consequently, Lnk inhibited 32D cell proliferation driven by different FLT3 oncogenic variants. Moreover, analysis of primary bone marrow cells from Lnk−/−mice showed that Lnk suppresses the expansion of FL-stimulated hematopoietic progenitors, including lymphoid-primed multipotent progenitors, mainly through inhibiting MAPK-ERK activation by FL. Conclusions This study reveals that through direct binding to FLT3-WT and FLT3-ITD, Lnk constrains FLT3-WT/ITD-dependent signaling pathways involved in the proliferation and expansion of hematopoietic cells as well as related leukemic cells. Modulation of Lnk expression levels may provide a unique therapeutic approach for FLT3-ITD-associated hematopoietic diseases. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-12-02
    Description: Relapse acute lymphoblastic leukemia (ALL) is the leading cause of childhood cancer deaths. Although relapse usually occurs in the bone marrow (medullary), extramedullary relapse occasionally occurs. Currently, the clonal origin and evolution of extramedullary relapse remain elusive. We selected two pediatric B-ALL patients who experienced testicular ALL relapse and interrogated their leukemic cells (diagnosis, remission, bone marrow relapse and testicular relapse) with whole exome sequencing. Case D483 (5.6 years old at diagnosis of ALL) developed bone marrow and testicular relapse 5 years after diagnosis of B-ALL. At diagnosis he was treated as an intermediate risk with hyperdiploid-ALL with the absence of any well-known ALL fusion-oncogene. Mutations of KRAS (G12D) and CREBBP (S1436C) were found in the founding leukemic clone at diagnosis and persisted in the bone marrow and testis at relapse). Mutation of CREBBP has been frequently found in ALL (particularly in hyperdiploid subtype) and is correlated with increased incidence of relapsed ALL. A MEF2B mutation (R17Q) was found in the bone marrow and testicular relapse sample. Missense mutation of this gene is frequently found in diffuse large B cell lymphoma (DLBCL); this protein regulates the expression of the proto-oncogene BCL6 and contributes to malignant transformation. Second child, case D727 (1.3 years old at diagnosis) harbored a MLL-AF9 fusion and was assigned as a high risk-ALL at diagnosis. Two NT5C2 mutations occurred at relapse, being present at different VAF in bone marrow and testicle: missense mutation R367Q was present with a VAF of 33.5% in bone marrow and 4.5% in testicle; while D407V was present with a VAF of 6.5% in bone marrow and 35.5% in the testicular relapse. NT5C2 encodes a 5'-nucleotidase involved in purine metabolism. The missense mutations (R367Q and D407V) identified here, have been reported as recurrent mutational hotspots of NT5C2 in relapse ALL and have been functionally validated. These mutations increase the 5'-IMP nucleotidase activity of NT5C2 protein leading to resistance to 6-mercaptopurine, a drug that was a component of the treatment regime of this patient. To understand the evolutionary trajectories of these two ALL cases, we analyzed clonal evolution based on their sequencing data. In patient D483, the relapse leukemia was directly evolved from the diagnosis leukemia clone: all of the mutations at diagnosis were persisted at relapse, and four mutated genes (MEF2B, KCNG1, AIM1, OTUD5) were acquired at both bone marrow and testicular relapse with different variant allele frequency (VAF). In patient D727, however, a faction of mutations present at diagnosis were subsequently lost at relapse, suggesting that relapsed leukemia arose from an ancestral subclone that developed before the overt leukemia at diagnosis. The mutational pattern and VAF cluster analysis results suggest that relapse in the patients' testicle represents an independently subclones from the relapse in their bone marrows. Taken together, our sequencing results suggest that relapse of patient D483 was directly evolved from the diagnosis leukemic clone; while the relapse leukemia cells (both bone marrow and testicle) of patient D727 was likely derived from a common ancestral clone, and the testicular relapse arose independently from the bone marrow relapse leukemia. Disclosures Lill: Sanofi: Speakers Bureau; California Cord Blood Services: Consultancy; Kite: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-11-26
    Description: Key Points MLL3 acts as tumor suppressor in FLT3-ITD AML. The existence of DNMT3A mutations in remission samples implies that the DNMT3A mutant clone can survive induction chemotherapy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-12-02
    Description: Chromosomal translocation t(8;21) (q22;q22) leading to generation of oncogenic RUNX1-RUNX1T1 fusion is a cytogenetic abnormality observed in about 10% of acute myelogenous leukemia (AML). Studies in animal models and recent next generation sequencing approaches have suggested cooperativity of secondary genetic lesions with t(8;21) in inducing leukemogenesis. In this study, we used targeted and whole exome sequencing of 93 cases (including 30 with matched relapse samples) to profile the mutational landscape of t(8;21) AML at initial diagnosis and post-therapy relapse. We identified recurrent mutations of KIT, TET2, MGA, FLT3, NRAS, DHX15, ASXL1 and KMT2Dgenes in this subtype of AML. In addition, high frequency of truncating alterations in ASXL2 gene (19%) also occurred in our cohort. ASXL2 is a member of mammalian ASXL family involved in epigenetic regulation through recruitment of polycomb or trithorax complexes. Unlike its closely related homolog ASXL1, which is mutated in several hematological malignancies including AML, MDS, MPN and others; mutations of ASXL2 occur specifically in t(8;21) AML. We observed that lentiviral shRNA-mediated silencing of ASXL2 impaired in vitro differentiation of t(8;21) AML cell line, Kasumi-1, and enhanced its colony forming ability. Gene expression analysis uncovered dysregulated expression of several key hematopoiesis genes such as IKZF2, JAG1, TAL1 and ARID5B in ASXL2 knockdown Kasumi-1 cells. Further, to investigate implications of loss of ASXL2 in vivo, we examined hematopoiesis in Asxl2 deficient mice. We observed an age-dependent increase in white blood cell count in the peripheral blood of Asxl2 KO mice. Myeloid progenitors from Asxl2 deficient mice possessed higher re-plating ability and displayed altered differentiation potential in vitro. Flow cytometric analysis of 〉1 year old mice revealed increased proportion of Lin-Sca1+Kit+ (LSK) cells in the bone marrow of Asxl2 deficient mice, while the overall bone marrow cellularity was significantly reduced. In vivo 5-bromo-2'-deoxyuridine incorporation assay showed increased cycling of LSK cells in mice lacking Asxl2. Asxl2 deficiency also led to perturbed maturation of myeloid and erythroid precursors in the bone marrow, which resulted in altered proportions of mature myeloid populations in spleen and peripheral blood. Further, splenomegaly was observed in old ASXL2 KO mice and histological and flow cytometric examination of ASXL2 deficient spleens demonstrated increased extramedullary hematopoiesis and myeloproliferation compared with the wild-type controls. Surprisingly, loss of ASXL2 also led to impaired T cell development as indicated by severe block in maturation of CD4-CD8- double negative (DN) population in mice 〉1 year old. These findings established a critical role of Asxl2 in maintaining steady state hematopoiesis. To gain mechanistic insights into its role during hematopoietic differentiation, we investigated changes in histone marks and gene expression affected by loss of Asxl2. Whole transcriptome sequencing of LSK population revealed dysregulated expression of key myeloid-specific genes including Mpo, Ltf, Ngp Ctsg, Camp and Csf1rin cells lacking Asxl2 compared to wild-type control. Asxl2 deficiency also caused changes in histone modifications, specifically H3K27 trimethylation levels were decreased and H2AK119 ubiquitination levels were increased in Asxl2 KO bone marrow cells. Global changes in histone marks in control and Asxl2 deficient mice are being investigated using ChIP-Sequencing. Finally, to examine cooperativity between the loss of Asxl2 and RUNX1-RUNX1T1 in leukemogenesis, KO and wild-type fetal liver cells were transduced with retrovirus expressing AML1-ETO 9a oncogene and transplanted into irradiated recipient mice, the results of this ongoing study will be discussed. Overall, our sequencing studies have identified ASXL2 as a gene frequently altered in t(8;21) AML. Functional studies in mouse model reveal that loss of ASXL2 causes defects in hematopoietic differentiation and leads to myeloproliferation, suggesting an essential role of ASXL2 in normal and malignant hematopoiesis. *LH and NH contributed equally Disclosures Ogawa: Takeda Pharmaceuticals: Consultancy, Research Funding; Sumitomo Dainippon Pharma: Research Funding; Kan research institute: Consultancy, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...