ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 20-21 (July 2007), p. 307-310 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The present work deals with a bioremediation study of a heavy-metal polluted harboursediment, obtained from the Italian Adriatic Coast. Bioleaching of the sediment sample wasperformed with a mixed culture of acidophilic, chemi-autotrophic Fe/S oxidising bacteria. Theeffect of an anaerobic biostimulation pre-treatment on the extent of Cd, Cu, Zn, Ni, Pb, Hg, As, Crextraction by bioleaching was evaluated. The biostimulation pre-treatment was intended tostimulate autochthonous sulfate reducing strains, to enhance the sulfide fraction in the sediment, tofavour subsequent activity of reduced-sulfur-oxidizing bacteria in the subsequent bioaugmentation(bioleaching). The effect of the duration of anaerobic pre-treatment (21 and 30 days) in the presenceand absence of 1% glucose was tested. The results obtained showed that the activity of the reducedsulfur-oxidising strains was significantly enhanced after an anaerobic pre-treatment of thesediments and showed real promise for the application of bioleaching for metal polluted sediments
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Spatial distributions of particulate organic matter (POM) and microbes were investigated during the summer of 1989–1990 in the coastal waters of Terra Nova Bay (Antarctica). The elemental (organic carbon and nitrogen) and biochemical (lipids, proteins, carbohydrates, DNA and RNA) composition of organic matter was related to bacterioplankton abundance, and pico-phytoplankton density. The ATP concentrations were also measured to gather information about the relationships between particulate matter composition and microbial distribution in Antarctic waters. Total seston was characterized by little spatial variation and was unrelated to the distance from the coast. Suspended particulate matter included some terrestrial components but was mostly composed of autochthonous material. POM was characterized by a uniform distribution and homogeneous composition (mostly of phytoplanktonic origin), and was associated with a relatively scarce microbial community characterized at the surface by high picophytoplankton density. The increase with depth of the living carbon fraction suggested an increase in the microheterotrophic community in the deeper water layers. A significant positive relationship between total bacterioplankton density, and carbohydrate and RNA concentrations was found. Similar significant relationships between pico-phytoplankton abundance and lipids, proteins, carbohydrates and nucleic acids were observed. On the basis of the close coupling found between microbiological and chemical compartments, it seems that, in Terra Nova Bay, bacterial distribution depends on suspended matter and in particular to the labile fraction of the organic detritus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 127 (1996), S. 1-13 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The biochemical composition of the sediment organic matter, and bacterial and meiofaunal dynamics, were monitored over an annual cycle in aPosidonia oceanica bed of the NW Mediterranean to test the response of the meiofauna assemblage to fluctuations in food availability. Primary production cycles of the seagrass and its epiphytes were responsible for relatively high (compared to other Mediterranean systems) standing stocks of organic carbon in sediments (from 1.98 to 6.16 mg Cg−1 sediment dry weight). The biopolymeric fraction of the organic matter (measured as lipids, carbohydrates, and proteins) accounted for only a small fraction (18%) of the total sedimentary organic carbon. About 25% of the biopolymeric fraction was of microphytobenthic origin. Sedimentary organic carbon was mostly refractory (56 to 84%) and probably largely not utilizable for benthic consumers. The biopolymeric fraction of the organic matter was characterized by high carbohydrate concentrations (from 0.27 to 5.31 mg g−1 sediment dry weight in the top 2 cm) and a very low protein content (from 0.07 to 0.80 mg g−1 sediment dry weight), which may be a limiting factor for heterotrophic metabolism in seagrass sediments. RNA and DNA concentrations of the Sediments varied significantly during the year. High RNA and DNA values occurred during the microphytobenthic bloom and in correspondence with peaks of bacterial abundance. Bacteria accounted for a small fraction of the total organic carbon (0.65%) and of the biopolymeric organic carbon (4.64%), whilst microphytobenthos accounted for 3.79% of total organic carbon and for 25.08% of the biopolymeric carbon. Bacterial abundance (from 0.8 to 5.8 × 108 g−1 sediment dry weight) responded significantly to seasonal changes of organic matter content and composition and was significantly correlated with carbohydrate concentrations. Bacteria might be, in the seagrass system, an important N storage for higher trophic levels as il accounted for 25% of the easily soluble protein. pool and contributed significantly to the total DNA pool (on average 12%). Total meiofaunal density ranged from 236 to 1858 ind. 10 cm−2 and was significantly related, with a time lag, to changes in bacterial standing stocks indicating that microbes might represent an important resource. Bacterial abundance and biomass were also significantly related to nematode abundance. These results indicate that bacteria may play a key role in the benthic trophic
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Variations in the biochemical composition of pseudo-faeces and faeces egested by Mytilus galloprovincialis (Lamarck) and in detritus derived from the somatic tissue of mussels during the decomposition process were investigated by means of two intensive experiments. During the degradation process, the biochemical composition of pseudo-faeces and faeces showed a clear increase in protein content related to the microbial colonization. Changes also occurred in the biochemical composition of particulate organic matter (POM) in the surrounding water due to faecal matter decomposition, heterotrophic utilization and conversion of particulate carbohydrates and proteins to the dissolved pool. The study of production and heterotrophic utilization of the POM derived from the somatic tissue of M. galloprovincialis collected in the Gulf of Tigullio, Italy in 1990 indicates that this kind of material is rapidly decomposable and largely available for benthic consumers. Bacteria utilized selectively the different compounds, and proteins proved to be the most suitable substrate for bacterial growth. The input of organic detritus into the experimental system resulted in an enhancement of bacterial activity and consequently of the RNA/DNA ratio. Bacterial DNA accounted on average for 17% of particulate DNA. During decomposition processes, nutrient release was about ten times higher than the value calculated from individual excretion rates, indicating that mussel beds may be important sites for nutrient regeneration. Carbon conversion efficiency for bacteria growing on faecal matter was, on average, 17.2%. The potential importance of faecal output and bacterial production as a carbon resource for benthic communities near mussel culture areas is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Variations in number and biomass of benthic bacteria were examined in the surface sediments of a Mediterranean seagrass bed [Posidonia oceanica (L.) Delile] in the Gulf of Marconi (northwestern Mediterranean Sea) from 1990 to 1991. The annual dynamics of benthic bacterial density and biomass were compared to changes in elemental (organic C and total N) and biochemical (lipids, proteins, carbohydrates) composition of sediment organic matter, as well as to microphytobenthic biomass, dissolved inorganic nutrients and ATP. Bacterial densities exhibited marked seasonal variations (5.12 to 322.7x108 cells g-1 sediment dry wt) with highest values in late spring. Bacterial standing stocks (15.8 to 882.33 μg C g-1 of sediment dry wt) were high. Bacterial biomass did not correlate with organic C, total N or to specific biochemical components, but correlated significantly with chlorophyll a, ATP and porewater phosphate concentrations. There is evidence that benthic bacteria were responding to variations of algal biomass. Bacterial biomass accounted, on average, for 30% of total living carbon (calculated on the basis of the ATP concentrations) and 8.4% of total organic carbon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 137 (2000), S. 359-370 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The benthic response to a plume front was studied in two areas of the northern Adriatic (Mediterranean Sea) differently influenced by the Po River freshwater input. Sediment samples were collected in June 1996 and February 1997 from 12 stations. The adopted sampling strategy was able to identify the front line in real time by satellite images and to locate sampling stations along an inner–outer plume gradient in order to cover the benthic area beneath the river plume, where enhanced biological production was expected, and open-sea sediments not directly influenced by freshwater inputs. Meiofaunal parameters were compared to the physical conditions and to phytodetritus inputs, organic matter accumulation and bacterial secondary production. The sediments of the Adriatic Sea were characterised by high concentrations of phytopigments (0.6 to 13.9 μg g−1 for chlorophyll a and 1.2 to 17.7 μg g−1 for phaeopigments) and biopolymeric organic carbon (0.15 to 3.02 mg g−1). The plume system extended for a large sector of the northern Adriatic. In the northern area, a large and highly dynamic plume area was coupled with a sediment organic matter concentration significantly higher than in open-sea sediments. In the southern sector, where the plume area and the front line did not change markedly during the year, plume–benthic coupling was evident only in the sediments beneath the front, and corresponded to phaeopigment accumulation. Bacterial parameters and secondary production were high and significantly higher in the frontal area than at open-sea stations. Meiofauna density (1342 to 8541 ind. 10 cm−2) did not change either by season or between areas and was significantly correlated with phaeopigments and bacterial secondary production. Meiofauna displayed different responses to plume inputs in the two sampling areas. In the northern sector, meiofauna density was coupled with organic matter distribution and displayed highest values beneath the plume. In the southern sector, the densities of copepods, turbellarians and kinorhynchs displayed highest values under the front in summer, and the same applied to total meiofauna density in winter. Juvenile decapods and copepod nauplii significantly increased their densities in sediments beneath the front. Data presented in the present study suggest that plume inputs and frontal systems, enhancing phytodetritus accumulation and benthic bacterial response, might influence density, composition and distribution of meiofaunal assemblages. As river plumes are highly variable systems affecting the trophic characteristics of the sediments underneath, their dynamics should be considered when analysing mesoscale spatial changes of meiofaunal assemblages.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The abundance and biomass of heterotrophic nanoflagellates were examined in continental and deep-sea sediments of the Cretan Sea (Eastern Mediterranean); at depths of 40 to 1540 m. Nanoflagellate distribution was compared to the composition of sedimentary organic matter and bacterial standing stocks to investigate trophic interactions and factors potentially affecting distribution. Quantitative estimates were obtained using different samplers for testing whether the box corer is as effective as the multiplecorer for bacterial and protozoan population estimates. The sediments of the deep Cretan Sea appeared extremely deficient in organic nutrients, and were composed mostly (more than 90%) of detritus. Labile organic compounds (such as lipids, proteins, and soluble carbohydrates) were present at extremely low concentrations, decreasing with water depth. Refractory and structural carbohydrates were the dominant biochemical class. The decrease in food quality with depth was associated with a strong decline of the RNA:DNA ratio. Benthic bacteria were constrained by food availability, and reacted to different organic matter inputs (especially total carbohydrates) at different depths. Large size bacteria were significantly correlated with the amounts of proteins and chloroplastic pigments. Heterotrophic nanoflagellate distribution in the continental shelf and deep-sea sediments of the Cretan Sea was controlled by available food sources (i.e., labile organic compounds and bacteria). Flagellate density was significantly correlated with the concentration of food indicators (chlorophyll a, soluble carbohydrates, and lipids), and to bacterial number and biomass. Despite the oligotrophy of the system, flagellate densities were high (40–119 × 103 g−1) and dominated by small cells (3 to 6 μm in length). These results, coupled with the high nanoflagellate to bacterial biomass ratio (up to 0.27 at 40 m depth), suggest that benthic nanoflagellates may contribute significantly to the direct transfer of detrital carbon and bacterial biomass to the metazoan component of the food web in the Cretan Sea.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-05-19
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-04-22
    Description: Viruses are key biological agents of prokaryotic mortality in the world oceans, particularly in deep-sea ecosystems where nearly all of the prokaryotic C production is transformed into organic detritus. However, the extent to which the decomposition of viral particles (i.e., organic material of viral origin) influences the functioning of benthic...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...