ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-24
    Description: It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diogo, Rui -- Kelly, Robert G -- Christiaen, Lionel -- Levine, Michael -- Ziermann, Janine M -- Molnar, Julia L -- Noden, Drew M -- Tzahor, Eldad -- NS076542/NS/NINDS NIH HHS/ -- R01 NS076542/NS/NINDS NIH HHS/ -- R01GM096032/GM/NIGMS NIH HHS/ -- R01HL108643/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Apr 23;520(7548):466-73. doi: 10.1038/nature14435.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, Howard University College of Medicine, Washington DC 20059, USA. ; Aix Marseille Universite, Centre National de la Recherche Scientifique, Institut de Biologie du Developpement de Marseille UMR 7288, 13288 Marseille, France. ; Center for Developmental Genetics, Department of Biology, New York University, New York 10003, USA. ; Department of Molecular and Cell Biology, University of California at Berkeley, California 94720, USA. ; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA. ; Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25903628" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Branchial Region/anatomy & histology/cytology/*embryology ; Head/*anatomy & histology/*embryology ; Heart/*anatomy & histology/*embryology ; Mesoderm/cytology ; Models, Biological ; Muscles/anatomy & histology/cytology/embryology ; Neural Crest/cytology ; Vertebrates/*anatomy & histology/*embryology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-03-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fekete, Donna M -- Noden, Drew M -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1396-7. doi: 10.1126/science.1236645.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA. dfekete@purdue.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520103" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ear, Middle/*cytology/*embryology ; Endoderm/*cytology ; Epithelium/*embryology ; Female ; Male ; Neural Crest/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-07-10
    Description: The human genomic instability syndrome ataxia telangiectasia (A-T), caused by mutations in the gene encoding the DNA damage checkpoint kinase ATM, is characterized by multisystem defects including neurodegeneration, immunodeficiency and increased cancer predisposition. ATM is central to a pathway that responds to double-strand DNA breaks, whereas the related kinase ATR leads a parallel signaling cascade that is activated by replication stress. To dissect the physiological relationship between the ATM and ATR pathways, we generated mice defective for both. Because complete ATR pathway inactivation causes embryonic lethality, we weakened the ATR mechanism to different degrees by impairing HUS1, a member of the 911 complex that is required for efficient ATR signaling. Notably, simultaneous ATM and HUS1 defects caused synthetic lethality. Atm/Hus1 double-mutant embryos showed widespread apoptosis and died mid-gestationally. Despite the underlying DNA damage checkpoint defects, increased DNA damage signaling was observed, as evidenced by H2AX phosphorylation and p53 accumulation. A less severe Hus1 defect together with Atm loss resulted in partial embryonic lethality, with the surviving double-mutant mice showing synergistic increases in genomic instability and specific developmental defects, including dwarfism, craniofacial abnormalities and brachymesophalangy, phenotypes that are observed in several human genomic instability disorders. In addition to identifying tissue-specific consequences of checkpoint dysfunction, these data highlight a robust, cooperative configuration for the mammalian DNA damage response network and further suggest HUS1 and related genes in the ATR pathway as candidate modifiers of disease severity in A-T patients.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...