ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 50 (1999), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Solution cadmium (Cd) concentrations and sorption and desorption of native and added Cd were studied in a range of New Zealand soils. The concentration of Cd in solution and the concentrations and patterns of native soil Cd desorbed and added Cd sorbed and desorbed varied greatly between the 29 soils studied. Correlation analysis revealed that pH was the most dominant soil variable affecting solution Cd concentration and sorption and desorption of native and added Cd in these soils. However, organic matter, cation exchange capacity (CEC) and total soil Cd were also found to be important. Multiple regression analysis showed that the log concentration of Cd in solution was strongly related to soil pH, organic matter and total Cd, which in combination explained 76% of the variation between soils. When data from the present study were combined into a single multiple regression with soil data from a previously published study, the equation generated could explain 81% of the variation in log Cd solution concentration. This reinforces the importance of pH, organic matter and total Cd in controlling solution Cd concentrations. Simple linear regression analysis could at best explain 53% of the total variation in Cd sorption or desorption for the soils studied. Multiple regression analysis showed that native Cd desorption was related to pH, organic matter and total Cd, which in combination explained 85% of the variation between soils. For sorption of Cd (from 2 μg Cd g–1 soil added), pH and organic matter in combination explained 75% of the variation between soils. However, for added Cd desorption (%), pH and CEC explained 77%. It is clear that the combined effects of a range of soil properties control the concentration of Cd in solution, and of sorption and desorption of Cd in soils. The fraction of potentially desorbable added Cd in soils could also be predicted from a soil’s Kd value. This could have value for assessing both the mobility of Cd in soil and its likely availability to plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 49 (1998), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Carbon-13 (C-13) solid-state NMR spectroscopy was used to investigate the chemical nature of organic C in mineral topsoil sampled under grassland and adjacent recently established (10–17 years old) coniferous forest (Douglas fir, Pseudotsuga menziesii; Ponderosa pine, Pinus ponderosa; Corsican pine, Pinus nigra) at two sites (Craigieburn, Cave Stream) in the South Island of New Zealand. This involved using a Cross-Polarized/Magic-Angle Spinning (CP/MAS) technique to identify different chemical forms of soil organic C, whilst Proton Spin Relaxation Editing (PSRE) was used to determine different ‘pools’ of soil organic C. Results obtained from the Craigieburn soils (0–5 cm) were more promising than those obtained from the Cave Stream soils (0–10 cm) because the total Fe content was smaller, and indicated a shift towards more recalcitrant forms of organic C in soil under trees compared with grassland, which might reflect reduced inputs of fresh organic matter to the soil under trees.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Ltd
    European journal of soil science 56 (2005), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Intact lysimeters (50 cm diameter, 70 cm deep) of silt loam soil under permanent grassland were used to investigate preferential transport of phosphorus (P) by leaching immediately after application of dairy effluent. Four treatments that received mineral P fertilizer alone (superphosphate at 45 kg P ha−1 year−1) or in combination with effluent (at ∼ 40–80 kg P ha−1 year−1) over 2 years were monitored. Losses of total P from the combined P fertilizer and effluent treatments were 1.6–2.3 kg ha−1 (60% of overall loss) during eight drainage events following effluent application. The rest of the P lost (40% of overall loss) occurred during 43 drainage events following a significant rainfall or irrigation compared with 0.30 kg ha−1 from mineral P fertilizer alone. Reactive forms of P (mainly dissolved reactive P: 38–76%) were the dominant fractions in effluent compared with unreactive P forms (mainly particulate unreactive P: 15–56%). In contrast, in leachate following effluent application, particulate unreactive P was the major fraction (71–79%) compared with dissolved reactive P (1–7%). The results were corroborated by 31P nuclear magnetic resonance analysis, which showed that inorganic orthophosphate was the predominant P fraction present in the effluent (86%), while orthophosphate monoesters and diesters together comprised up to 88% of P in leachate. This shows that unreactive P forms were selectively transported through soil because of their greater mobility as monoesters (labile monoester P and inositol hexakisphosphate) and diesters. The short-term strategies for reducing loss of P after application of dairy effluent application should involve increasing the residence time of applied effluent in the soil profile. This can be achieved by applying effluent frequently in small amounts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Weed research 37 (1997), S. 0 
    ISSN: 1365-3180
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The degradation of imazapyr, flumetsulam and thifensulfuron applied at 500.40 and 30 g active ingredient (a.i.) ha-1, respectively, to silt loam soil was studied under laboratory and field conditions. Herbicide residues were analysed by a lentil (Lens culinarits L.) bioassay. Results showed that temperature had a significant effect on herbicide degradation, whereas the impact of soil organic matter ami pH were less well defined. Half-lives for imazapyr, flumetsulam and thifensulfuron in soil samples from the 0-5 cm layer (6.4% organic carbon) at 15 °C were 125, 88 and 5.4 days, respectively, and 69, 30 and 3.9 days at 30°C. In soil sampled from the 15-20 cm layer (3.5% organic carbon) half-lives were 155. 70 and 6.4 days, respectively, at 15 °C and 77, 24 and 4.8 days at 30 °C, A field experiment investigated the degradation and teaching of each herbicide under two precipitation regimes [natural precipitation (208 mm), and natural precipitation plus 75 mm irrigation (283 mm) over 4 months to a soil depth of 25 cm. Thifensulfuron degraded rapidly, whereas residues of flumetsulam and imazapyr leached below 25 cm in both the low-and high-precipitasion treatments after 4 months. Significant imazapyr residues were still present in the soil to 25 cm depth after 3 months, A multi-component model for herbicide dissipation was developed and evaluated using data from the laboratory and field experiments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 24 (1996), S. 1-12 
    ISSN: 1432-0789
    Keywords: Key words Phosphorus ; Isotope techniques ; Forest ; P immobilization ; Soil-plant system ; Root activity ; Nutrient cycling ; Organic P sources
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A sound understanding of nutrient dynamics in ecosystems is required in order to manage these systems on a sustainable basis. A valuable approach to studying phosphorus (P) dynamics in soil-plant systems has been the use of P isotope techniques. Isotope techniques used for studying P cycling in agricultural and forest soils are reviewed in this paper with particular reference to advances made in the past 15 years. A brief discussion of the properties of P isotopes and their measurements is included together with techniques for measuring exchangeable P in the soil, dissolution and decomposition rates of inorganic and organic P sources applied to the soil, rates of organic P immobilization and mineralization, rates of P release and retention in the soil, root activity and litter decomposition rates in forest soils, and gene probing and hybridization. Basic principles, assumptions, procedures, limitations and merits of methods are discussed. These techniques have served as or have the potential to be valuable tools for advancing our understanding of P dynamics in soil-plant systems, and for studying the molecular characteristics of microbial communities in relation to the cycling of nutrients in the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 24 (1997), S. 1-12 
    ISSN: 1432-0789
    Keywords: Phosphorus ; Isotope techniques ; Forest P immobilization ; Soil-plant system ; Root activity Nutrient cycling ; Organic P sources
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A sound understanding of nutrient dynamics in ecosystems is required in order to manage these systems on a sustainable basis. A valuable approach to studying phosphorus (P) dynamics in soil-plant systems has been the use of P isotope techniques. Isotope techniques used for studying P cycling in agricultural and forest soils are reviewed in this paper with particular reference to advances made in the part 15 years. A brief discussion of the properties of P isotopes and their measurements is included together with techniques for measuring exchangeable P in the soil, dissolution and decomposition rates of inorganic and organic P sources applied to the soil, rates of organic P immobilization and mineralization, rates of P release and retention in the soil, root activity and lifter decomposition rates in forest soils, and gene probing and hybridization. Basic principles, assumptions, procedures, limitations and merits of methods are discussed. These techniques have served as or have the potential to be valuable tools for advancing our understanding of P dynamics in soil-plant systems, and for studying the molecular characteristics of microbial communities in relation to the cycling of nutrients in the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-0867
    Keywords: apatite cell dimensions ; chemical characteristics ; chemical solubility ; partial acidulation ; phosphate rock ; residual phosphate rock ; X-ray diffraction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Original phosphate rocks (PR) and water insoluble residues (WIR) from mixtures of reactive PRs and single superphosphate, known commercially as longlife single superphosphate (LLSSP), and from partially acidulated PRs (PAPR), were compared in terms of their elemental content, chemical reactivity as indicated by the apatite unit cell ‘a’ dimension and solubility. Phosphate rock reactivity is known to be inversely related to the ‘a’ dimension. Partial acidulation (20%) with commercial grade phosphoric acid resulted in an increase in aluminium (Al), iron (Fe) and fluoride (F) concentrations in the WIRs. The apatite ‘a’ dimensions of WIRs from LLSSPs were greater than those of the respective original North Carolina (NC), Khouribga (KR), Jordan (JR), Sechura (SE) and Arad (AR) PRs added to single superphosphate (SSP), made from Nauru PR (NR)) to produce the LLSSPs. This was attributed to the presence of the less reactive NR in the WIRs left-over from the SSP. Partial acidulation with phosphoric acid increased the apatite ‘a’ dimensions of NC and ElHassa (EH) PRs. The increase in apatite ‘a’ dimension of NC and EH was probably due to selective dissolution of a more reactive fraction of the PRs during partial acidulation. Changes in the apatite ‘a’ dimension following partial acidulation with phosphoric acid were not significant for the other PRs studied, e.g. Gafsa (GF), KR and AR, although differential X-ray diffractograms (DXRD) indicated that the material dissolved during partial acidulation was more reactive than the WIRs and the original PRs. The apatite ‘a’ dimension of NC PR was not affected by pretreatment with 2% or 4% citric acid (CTA). The contrasting response in ‘a’ of NC PR to acidulation with phosphoric and citric acids may be related to differences in the strength of these acids, and/or to the differing environments under which the reactions took place. The 2% CTA and formic acid (FMA) solubilities of the WIRs from LLSSPs and PAPRs were markedly lower than those of the original PRs. This reduction in solubility of PRs following partial acidulation was probably related to changes in mineralogical and chemical composition of the WIRs as indicated by the increases in apatite ‘a’ dimension of some residual PRs and shifts in peak positions in DXRD, to increases in the concentrations of Fe, Al and F compounds, and to coating effects of PR particles by Fe, Al and F compounds. This, in turn, may reduce the agronomic value of the residual PR component of PAPR and LLSSP fertilizers, particularly over the short-term. The solubility of residual PRs following pretreatment with 2% or 4% CTA was slightly lower than that of the original PRs. The pretreatment caused no significant change in the apatite ‘a’ dimension of NC PR. The complexing effects of CTA and its lack of Fe and Al impurities may have prevented the formation of Fe, Al and F compounds. The effect of citric acid on PR reactivity is thus quite different from that of the mineral acids used to prepare LLSSPs and PAPRs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-0867
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The nature of the residual apatites remaining after the partial acidulation of North Carolina, Jordan and Nauru phosphate rocks have been studied using chemical and physical methods of analysis and the agronomic efficiency of residual North Carolina apatite compared to that of unacidulated North Carolina phosphate rock using a glasshouse pot trial technique. The residual apatites were found to differ from the apatites contained in the original phosphate rocks. Solubilities in 2% citric acid and formic acid were markedly reduced, with the most reactive material (North Carolina) showing the greatest reductions in solubilities and the least reactive (Nauru) exhibiting the lowest reductions. The unit cell dimensions of residual North Carolina apatite were determined by x-ray diffraction and indicated a lesser amount of carbonate substitution for phosphate in the apatite lattice than was the case in the original phosphate rock. This was confirmed by chemical analysis. The residual North Carolina apatite initially performed much less well agronomically than the unacidulated phosphate rock, with the increase in yield (rye grass) over control after three harvests for the residual apatite being only 50–60% of that obtained for the unacidulated material. After 11 harvests however, the residual apatite had improved to give yield increases which were 70–80% of those resulting from the original phosphate rock. The observed differences between the residual apatites contained in PAPRs and unacidulated phosphate rocks appear to be the result of an apatite-monocalcium phosphate interaction which occurs during storage after the main apatite-phosphoric acid reaction has taken place.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0789
    Keywords: Soil phosphorus fractions ; Organic matter stability ; Acid soil ; Exchangeable aluminium ; Liming ; Laboratory incubation ; Ranker ; Quercus robur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A laboratory incubation experiment was carried out over 17 weeks to determine the effect of liming on soil organic matter. The amount of lime as calcium hydroxide [Ca(OH)2] required to completely neutralise exchangeable Al was found to be five times the standard lime requirement. This large amount of lime had a limited overall effect on the short-term stability of soil organic matter, causing the release of 1300 μg g-1 of C (1.7% total soil C) above the control during the incubation. Liming may have altered the potential availability of soil organic matter and organic P, as shown by a marked reduction in the extractability of soil organic P with sodium bicarbonate and sodium hydroxide. The latter was unlikely to be due to the formation of calclium-P artefacts, and may be attributed to the combined chemical effects of added calcium hydroxide and precipitation of exchangeable Al on the nature and solubility of soil organic constituents and organomineral complexes. The addition of lime increased the degradation of added oak leaf litter by 50%, from 3.2 to 4.7 mg g-1, as determined by CO2 evolution. The enhanced litter degradation indicated increased microbial activity in limed soil, but this improvement had only minor effects on the stability of native organic matter. This study highlights the need for further research into the relationships between the chemical nature of organic P in soil and the physical, chemical, temporal, and agronomic factors that control its turnover and availability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 21 (1996), S. 37-42 
    ISSN: 1432-0789
    Keywords: 31P nuclear magnetic resonance (NMR) ; Soil phosphorus fractions ; Mineralization ; Tussock grassland ; Conifers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We examined the effects of conifers on the forms of P in low-fertility tussock grassland soils using 31P nuclear magnetic resonance (NMR) and soil P fractionation. Results from field and glasshouse experiments clearly demonstrated that conifers enhanced the mineralization of labile (and to a lesser extent more resistant) forms of soil organic P which, in turn, increased amounts of labile inorganic P in the soil. These findings have important implications for P availability and long-term sustainable management of grassland soils in New Zealand.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...