ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-08-30
    Description: The transcription factor encoded by the E-twenty-six (ETS)-related gene, ERG, is an essential regulator of hematopoietic stem cell function and a potent human oncoprotein. Enforced expression of ERG in murine hematopoietic cells leads to the development of a well-characterized lymphoid leukemia and a less well-defined non lymphoid disease. To clarify the latter, we generated murine bone marrow chimeras with enforced Erg expression in engrafted hematopoietic progenitor cells. As expected, these mice developed lymphoid leukemia. However, the previously reported non lymphoid disease that developed was shown to be a uniform, transplantable leukemia with both erythroid and megakaryocytic characteristics. In vivo, this disease had the overall appearance of an erythroleukemia, with an accumulation of immature erythroblasts that infiltrated the bone marrow, spleen, liver, and lung. However, when stimulated in vitro, leukemic cell clones exhibited both erythroid and megakaryocytic differentiation, suggesting that transformation occurred in a bipotential progenitor. Thus, in mice, Erg overexpression induces the development of not only lymphoid leukemia but also erythro-megakaryocytic leukemia.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
  • 4
    Publication Date: 2011-06-11
    Print ISSN: 0938-8990
    Electronic ISSN: 1432-1777
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-11-19
    Description: Abstract LBA-3 Mutations in the transcription factor genes, RUNX1 and CEBPA, can lead to an autosomal dominant familial predisposition to MDS/AML. Using a candidate gene approach, we have detected domain specific heterozygous mutations in the GATA2 gene in 4 MDS/AML families which predispose to MDS/AML. The same novel heterozygous T354M missense mutation was observed in 3 families and a 355delT mutation in 1 family, all with multigenerational transmission of MDS and/or MDS/AML. Importantly, these genetic variants segregate with all affected members in each of the families. The 2 mutated threonine residues are in 5 consecutive highly conserved threonine residues at the DNA-binding, protein-protein interacting second zinc finger (ZF2) of GATA2. Neither these mutations, nor any other variants in the GATA2 coding sequence, were seen in a population screen of 695 normal individuals. Haplotype analysis suggests that the T354M mutation has multiple ancestral origins. While mutations in RUNX1 and CEBPA, can also lead to familial predisposition to MDS/AML, these patients with GATA2 mutations are unique in that there is no obvious pre-MDS or pre-leukaemic phenotype such as thrombocytopenia (RUNX1) and eosinophilia (CEBPA) in predisposed carriers. Most patients in these families have had a rapid disease course “appearing out of the blue” leading to death, with a variety of ages of onset from teenagers to early 40s. Yet remarkably, there are still asymptomatic carriers in their 60s. One of these carriers, and his 2 children, has had bone marrow prophylactically stored over 15 years ago in case of disease onset. No pathogenic GATA2 coding sequence changes were found in 268 sporadic MDS/AML patient samples. Additionally, GATA2 mutations were not found in germline samples from 35 other families predisposed to AML and various other hematological malignancies. Both the T354M and 355delT mutants appear to localize appropriately to the nucleus and maintain at least some DNA binding in electrophoretic mobility shift assays. We used the known murine Gata3 ZF2 structure bound to DNA to model the effects of the observed mutations and demonstrated that the T354 residue does not contact DNA but makes polar contact with the adjacent threonines, and via its amino group, with C349 which coordinates the zinc atom. Replacement of the T354 side-chain with the bulky methionine moiety may affect the zinc contacts and is predicted to alter the overall structure of this ZF2. In contrast, 355delT will shorten the conserved threonine string which is predicted to impact on the orientation and position of L359 which directly contacts DNA. Thus, 355delT is likely to have an effect on DNA binding. Luciferase reporter assays indicate that T354M and 355delT greatly reduce the transactivation ability of GATA2 on multiple response elements, impacting on downstream target genes such as RUNX1 and CD34. Of note, T354M shows a markedly lesser synergistic effect than wildtype (WT) GATA2 with PU.1 on the CSF1R promoter. Competition assays show that these mutations may be acting in a dominant negative fashion in some biological contexts. In stable promyelocytic HL-60 cell lines expressing regulatable GATA2 (WT or T354M), T354M allows proliferation to proceed even under stimulus to differentiate with all-trans retinoic acid. Microarray studies indicated that the down regulation of proapoptotic BCL-xS by T354M, but not WT, may be responsible for this phenotype. GATA2 is considered to be a hematopoietic “stemness” gene, highly expressed in haematopoietic stem cells and is required for megakaryocyte and mast cell production. GATA2 is down regulated during myeloid differentiation and forced overexpression prevents such differentiation. Discovery of GATA2 mutants in MDS/AML predisposed families provides new tools for probing the mechanism of GATA2 induced leukemogenesis, and possibly also for clarifying its role in maintenance of stemness. Our findings highlight the power of investigating familial predispositions to cancer identifying specific mutations with unique biological effects. They have immediate implications for diagnostic genetic testing, and longer term therapeutic implications through identification of drugable biological pathways such as apoptosis. The poor outcome associated with these mutations may suggest that an aggressive strategy is appropriate in the treatment of affected individuals in families found to be carrying GATA2 mutations. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-05-13
    Description: Down syndrome is characterized by multiple phenotypic manifestations associated with trisomy of chromosome 21. The transient myeloproliferative disorder and acute megakaryocytic leukemia associated with Down syndrome are uniquely associated with mutations in the transcription factor GATA1; however, the identity of trisomic genes on chromosome 21 that predispose to these hematologic disorders remains unknown. Using a loss-of-function allele, we show that specific reduction to functional disomy of the Erg gene corrects the pathologic and hematologic features of myeloproliferation in the Ts(1716)65Dn mouse model of Down syndrome, including megakaryocytosis and progenitor cell expansion. Our data provide genetic evidence establishing the need for Erg trisomy for myeloproliferation in Ts(1716)65Dn mice and imply that increased ERG gene dosage may be a key consequence of trisomy 21 that can predispose to malignant hematologic disorders in Down syndrome.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-02
    Description: Introduction: Regulation of the epithelial to mesenchymal transition (EMT) is an emerging theme in acute leukemia biology (1, 2). EMT is required for many aspects of development, including gastrulation and mesoderm formation. It has also been associated with malignant processes such as epithelial tumor cell invasion and metastasis, and the development, function and chemo-resistance of cancer stem cells. Master regulators of EMT belong to the Snail (Snai1/Snai2/Snai3) and Zeb (Zeb1/Zeb2) families of transcription factors. While they have primarily been studied in relation to solid organ development and embryogenesis, recent work has begun to uncover novel roles for these proteins in both normal and malignant hematopoiesis. A mounting body of evidence implicates the founding member of the Snail family, SNAI1, in Acute Myeloid Leukaemia (AML) development. Transgenic Snai1 expression induces myeloid leukaemia in mice (3), and human AML cells show increased SNAI1 expression compared to haematopoietic stem and progenitor cells (HSPCs). We have also found that shRNA knockdown of SNAI1 in AML cells induces differentiation, as measured by increased CD11b expression. In this paper we elucidate the mechanisms by which elevated levels of Snai1 impair normal hematopoiesis and promote leukemogenesis. Results: We employed murine retroviral and transgenic models to drive high levels of Snai1 in hematopoietic cells in vivo. Homozygous expression of a Snai1 transgene, using the endothelial and hematopoietic restricted Tie2-Cre, resulted in embryonic lethality at E15.5-17.5. Embryos were highly anemic, exhibiting normal primitive erythropoiesis, but severely impaired definitive erythropoiesis. Retroviral mediated overexpression of Snai1 during adult hematopoiesis resulted in a significant expansion of the Granulocyte-Macrophage progenitor (GMP) compartment, with a concomitant reduction in Megakaryocyte-Erythroid progenitor (MEP) numbers. Downstream myeloid development was also perturbed, with a strong differentiation bias towards macrophage production, at the expense of granulocyte development. Mice (n=4) have also begun to develop an aggressive AML beginning at 12 months of age, consistent with the previously published transgenic model (3). The effects of Snai1 expression on myeloid development are reminiscent of those observed in mice lacking Gfi1 or Gfi1b, suggesting possible competition for, or altered function of, their common co-repressor: the chromatin modulator Lsd1. To test this hypothesis, we generated a mutant form of Snai1 that does not bind Lsd1 and retrovirally expressed it in HSPCs. Unlike wild-type Snai1, the mutant form was unable to induce hematopoietic defects or AML development in mice. We next conducted gene expression profiling on the HPC7 hematopoietic progenitor cell line, with or without ectopic Snai1 expression. We observed a significant up-regulation of GMP-associated genes and more mature monocyte/macrophage related genes. These data, along with morphological analysis, suggested that Snai1 expressing HPC7 cells take on a macrophage-biased GMP-like phenotype, but do not fully differentiate into mature myeloid cells. Moreover, there was a significant correlation to gene expression programs from Gfi1/1b knockout HSCs, further implicating loss of Gfi1/1b activity in driving these myeloid phenotypes. Strikingly, we also observed evidence of inflammatory cytokine production and activation of key downstream signaling pathways that contribute to AML cell survival and proliferation. Whether this effect is due to altered regulation of Lsd1 targets, or instead represents a distinct Lsd1-independent mechanism, remains to be determined. Conclusion: We have shown that Snai1 expression perturbs myeloid cell development and induces AML in an Lsd1-dependent manner. Snai1 expression likely contributes to increased survival and proliferation of leukemic cells via induction of key inflammatory signaling pathways that support tumor cell growth. These data confirm the importance of Snai1 in AML development and pathogenesis. References: 1. Goossens S, et al. (2015).Nature communications 6:5794. 2. Stavropoulou V, et al. (2016). Cancer cell 30(1):43-58. 3. Perez-Mancera PA, et al. (2005). Human molecular genetics 14(22):3449-3461. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-11-16
    Description: Abstract 1283 ETS-related gene, ERG, is a key regulator of hematopoietic stem cell (HSC) function, and a potent oncogene. It is involved in chromosomal translocations with the EWS gene in Ewing's sarcoma, the TLS gene in Acute Myeloid Leukemia (AML) and the TMPRSS2 gene in more than half of all prostate cancers. In addition, increased ERG levels are associated with poor prognosis in cytogenetically normal AML and T-cell Acute Lymphoblastic Leukemia; and our recent data suggests that trisomy of ERG is important for development of myeloproliferative disease and Acute Megakaryocytic Leukemia (AMKL) in Down syndrome individuals. The role ERG, and the oncogenic fusion protein TLS-ERG, play during hematopoietic transformation remains unclear. Hematopoietic overexpression of ERG has been shown to induce T-cell leukemia in mice. Development of a non-lymphoid disease has also been described, however this disease was reported to be an AMKL by one group, and a non-malignant erythroid hyperplasia by another. Hematopoietic overexpression of TLS-ERG in mice has not been described. This fusion has been shown to perturb differentiation and increase self-renewal of human myeloid progenitor cells in vitro, and enable the IL-3 dependent L-G murine myeloid progenitor cell line to induce a leukemia-like disease in vivo. In order to clarify and compare the role of wild-type and rearranged forms of ERG in leukemia development, we injected lethally irradiated mice with fetal liver cells (FLCs) transduced with retrovirus carrying either Erg or TLS-ERG. These mice succumbed to disease with a median latency of 80 days after receiving Erg-transduced FLCs, or 44 days after receiving TLS-ERG-transduced FLCs. Consistent with published data, 30% of Erg mice developed T-cell leukemias. Interestingly, no TLS-ERG mice developed this disease. Strikingly, 100% of Erg and TLS-ERG mice developed an identical non-lymphoid disease characterised by hepatosplenomegaly, anemia and leukocytosis. Histopathological and flow cytometric analysis revealed infiltration of the bone marrow, spleen, lung and liver by nucleated erythroblasts, expressing a high level of CD71 and varying levels of Ter119. Interestingly, in some mice a subset of these cells also expressed the megakaryocytic marker CD41. Primary spleen cells were capable of transplanting disease in non-irradiated mice, demonstrating that this disease was malignant. Spleen cells from Erg and TLS-ERG leukemic mice, but not controls, were capable of generating large numbers of small colonies when cultured in methylcellulose stimulated with IL-3/SCF/EPO. These colonies primarily contained erythroblasts (CD71+Ter119+/−), however some cells also expressed CD41 and were acetylcholinesterase positive. Most acetylcholinesterase positive cells were of small size, indicating either incomplete or early megakaryocyte maturation. Combined, these data suggest that hematopoietic overexpression of Erg or TLS-ERG in mice leads to transformation of a bi-potential erythroid-megakaryocyte progenitor. Following transformation, this cell appears to retain some bi-potentiality in vitro, however in vivo it primarily develops along the erythroid lineage. Thus, Erg- and TLS-ERG- induced non-lymphoid disease may be best described as an erythro-megakaryocytic leukemia. Finally, the data also indicate that truncation and fusion to TLS abrogates ERG's ability to transform lymphoid progenitors, however TLS-ERG retains the ability to transform myeloid progenitors in a manner that strongly resembles that of wild-type Erg. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-06
    Description: Acute erythroleukemia (AEL or acute myeloid leukemia [AML]-M6) is a rare but aggressive hematologic malignancy. Previous studies showed that AEL leukemic cells often carry complex karyotypes and mutations in known AML-associated oncogenes. To better define the underlying molecular mechanisms driving the erythroid phenotype, we studied a series of 33 AEL samples representing 3 genetic AEL subgroups including TP53-mutated, epigenetic regulator-mutated (eg, DNMT3A, TET2, or IDH2), and undefined cases with low mutational burden. We established an erythroid vs myeloid transcriptome-based space in which, independently of the molecular subgroup, the majority of the AEL samples exhibited a unique mapping different from both non-M6 AML and myelodysplastic syndrome samples. Notably, 〉25% of AEL patients, including in the genetically undefined subgroup, showed aberrant expression of key transcriptional regulators, including SKI, ERG, and ETO2. Ectopic expression of these factors in murine erythroid progenitors blocked in vitro erythroid differentiation and led to immortalization associated with decreased chromatin accessibility at GATA1-binding sites and functional interference with GATA1 activity. In vivo models showed development of lethal erythroid, mixed erythroid/myeloid, or other malignancies depending on the cell population in which AEL-associated alterations were expressed. Collectively, our data indicate that AEL is a molecularly heterogeneous disease with an erythroid identity that results in part from the aberrant activity of key erythroid transcription factors in hematopoietic stem or progenitor cells.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-20
    Description: Modulators of epithelial-to-mesenchymal transition (EMT) have recently emerged as novel players in the field of leukemia biology. The mechanisms by which EMT modulators contribute to leukemia pathogenesis, however, remain to be elucidated. Here we show that overexpression of SNAI1, a key modulator of EMT, is a pathologically relevant event in human acute myeloid leukemia (AML) that contributes to impaired differentiation, enhanced self-renewal, and proliferation of immature myeloid cells. We demonstrate that ectopic expression of Snai1 in hematopoietic cells predisposes mice to AML development. This effect is mediated by interaction with the histone demethylase KDM1A/LSD1. Our data shed new light on the role of SNAI1 in leukemia development and identify a novel mechanism of LSD1 corruption in cancer. This is particularly pertinent given the current interest surrounding the use of LSD1 inhibitors in the treatment of multiple different malignancies, including AML.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...