ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Publisher
Language
  • 1
    Call number: G 7911
    In: Chemie
    Type of Medium: Monograph available for loan
    Pages: 151 S. : graph. Darst.
    Edition: 1. Aufl.
    Series Statement: Lehrprogrammbücher Hochschulstudium : Chemie 4
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-11-01
    Print ISSN: 0304-3800
    Electronic ISSN: 1872-7026
    Topics: Biology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-03-03
    Description: This paper analyses the effect of spatial input data resolution on the simulated water balances and flow components using the multi-scale hydrological model TOPLATS. A data set of 25m resolution of the central German Dill catchment (693 km2) is used for investigation. After an aggregation of digital elevation model, soil map and land use classification to 50 m, 75 m, 100 m, 150 m, 200 m, 300 m, 500 m, 1000 m and 2000 m, water balances and water flow components are calculated for the entire Dill catchment as well as for 3 subcatchments without any recalibration. The study shows that model performance measures and simulated water balances almost remain constant for most of the aggregation steps for all investigated catchments. Slight differences in the simulated water balances and statistical quality measures occur for single catchments at the resolution of 50 m to 500 m (e.g. 0–3% for annual stream flow), significant differences at the resolution of 1000 m and 2000 m (e.g. 2–12% for annual stream flow). These differences can be explained by the fact that the statistics of certain input data (land use data in particular as well as soil physical characteristics) changes significantly at these spatial resolutions. The impact of smoothing the relief by aggregation occurs continuously but is barely reflected by the simulation results. To study the effect of aggregation of land use data in detail, in addition to current land use the effect of aggregation on the water balance calculations based on three different land use scenarios is investigated. Land use scenarios were available aiming on economic optimisation of agricultural and forestry practices at different field sizes (0.5 ha, 1.5 ha and 5.0 ha). The changes in water balance terms, induced by aggregation of the land use scenarios, are comparable with respect to catchment water balances compared to the current land use. A correlation analysis between statistics of input data and simulated annual water fluxes only in some cases reveals systematically high correlation coefficients for all investigated catchments and data sets (e.g. actual evapotranspiration is correlated to land use, surface runoff generation is correlated to soil properties). Predominantly the correlation between catchment properties (e.g. topographic index, transmissivity, land use) and simulated water flows varies from catchment to catchment. Catchment specific properties determine correlations between properties and fluxes, but do not influence the effect of data aggregation. This study indicates that an aggregation of input data for the calculation of regional water balances using TOPLATS type models leads to significant errors from a resolution exceeding 500 m. Correlating statistics of input data and simulation results indicates that a meaningful aggregation of data should in the first instance aim on preserving the areal fractions of land use classes.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-11-04
    Description: Ten conceptually different models in predicting discharge from the artificial Chicken Creek catchment in North-East Germany were used for this study. Soil texture and topography data were given to the modellers, but discharge data was withheld. We compare the predictions with the measurements from the 6 ha catchment and discuss the conceptualization and parameterization of the models. The predictions vary in a wide range, e.g. with the predicted actual evapotranspiration ranging from 88 to 579 mm/y and the discharge from 19 to 346 mm/y. The predicted components of the hydrological cycle deviated systematically from the observations, which were not known to the modellers. Discharge was mainly predicted as subsurface discharge with little direct runoff. In reality, surface runoff was a major flow component despite the fairly coarse soil texture. The actual evapotranspiration (AET) and the ratio between actual and potential ET was systematically overestimated by nine of the ten models. None of the model simulations came even close to the observed water balance for the entire 3-year study period. The comparison indicates that the personal judgement of the modellers was a major source of the differences between the model results. The most important parameters to be presumed were the soil parameters and the initial soil-water content while plant parameterization had, in this particular case of sparse vegetation, only a minor influence on the results.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-06-04
    Description: In practice, the catchment hydrologist is often confronted with the task of predicting discharge without having the needed records for calibration. Here, we report the discharge predictions of 10 modellers – using the model of their choice – for the man-made Chicken Creek catchment (6 ha, northeast Germany, Gerwin et al., 2009b) and we analyse how well they improved their prediction in three steps based on adding information prior to each following step. The modellers predicted the catchment's hydrological response in its initial phase without having access to the observed records. They used conceptually different physically based models and their modelling experience differed largely. Hence, they encountered two problems: (i) to simulate discharge for an ungauged catchment and (ii) using models that were developed for catchments, which are not in a state of landscape transformation. The prediction exercise was organized in three steps: (1) for the first prediction the modellers received a basic data set describing the catchment to a degree somewhat more complete than usually available for a priori predictions of ungauged catchments; they did not obtain information on stream flow, soil moisture, nor groundwater response and had therefore to guess the initial conditions; (2) before the second prediction they inspected the catchment on-site and discussed their first prediction attempt; (3) for their third prediction they were offered additional data by charging them pro forma with the costs for obtaining this additional information. Holländer et al. (2009) discussed the range of predictions obtained in step (1). Here, we detail the modeller's assumptions and decisions in accounting for the various processes. We document the prediction progress as well as the learning process resulting from the availability of added information. For the second and third steps, the progress in prediction quality is evaluated in relation to individual modelling experience and costs of added information. In this qualitative analysis of a statistically small number of predictions we learned (i) that soft information such as the modeller's system understanding is as important as the model itself (hard information), (ii) that the sequence of modelling steps matters (field visit, interactions between differently experienced experts, choice of model, selection of available data, and methods for parameter guessing), and (iii) that added process understanding can be as efficient as adding data for improving parameters needed to satisfy model requirements.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-04-15
    Description: We used ten conceptually different models to predict discharge from the artificial Chicken Creek catchment in North-East Germany. Soil textural and topography data were given to the modellers, but discharge data were withheld. We compare the predictions with the measurements from the 6 ha catchment and discuss the conceptualization and parameterization of the models. The predictions vary in a wide range, e.g. the predicted actual evapotranspiration ranged from 88 to 579 mm/y and the discharge from 19 to 346 mm/y. All model simulations revealed systematic deviations between observations of major components of the hydrological cycle (not known to the modellers) and the simulation results. Discharge was predicted mainly as subsurface discharge with little direct runoff. In reality, surface runoff was a major flow component despite the fairly coarse soil texture. The actual evapotranspiration (AET) was systematically overestimated by nine of ten models as was the ratio between actual and potential ET. Overall, none of the model simulations came close to the correct water balance during the entire 3-year study period. The comparison indicated that the personal judgement of the modellers was a major source of the differences between the model results. The most important parameters to be guessed were the soil parameters and the initial soil water content while plant parameterization had in this particular case of a sparse vegetation only a minor influence on the results.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-10-10
    Description: This paper analyses the effect of spatial input data resolution on the simulated water balances and flow components using the multi-scale hydrological model TOPLATS. A data set of 25m resolution of the central German Dill catchment (693 km2 is used for investigation. After an aggregation of digital elevation model, soil map and land use classification to 50 m, 75 m, 100 m, 150 m, 200 m, 300 m, 500 m, 1000 m and 2000 m, water balances and water flow components are calculated for the entire Dill catchment as well as for 3 subcatchments without any recalibration. The study shows that both model performance measures as well as simulated water balances almost remain constant for most of the aggregation steps for all investigated catchments. Slight differences occur for single catchments at the resolution of 50–500 m (e.g. 0–3% for annual stream flow), significant differences at the resolution of 1000 m and 2000 m (e.g. 2–12% for annual stream flow). These differences can be explained by the fact that the statistics of certain input data (land use data in particular as well as soil physical characteristics) changes significantly at these spatial resolutions, too. The impact of smoothing the relief by aggregation occurs continuously but is not reflected by the simulation results. To study the effect of aggregation of land use data in detail, three different land use scenarios are aggregated which were generated aiming on economic optimisation at different field sizes (0.5 ha, 1.5 ha and 5.0 ha). The changes induced by aggregation of these land use scenarios are comparable with respect to catchment water balances compared to the current land use. A correlation analysis only in some cases reveals high correlation between changes in both input data and in simulation results for all catchments and land use scenarios combinations (e.g. evapotranspiration is correlated to land use, runoff generation is correlated to soil properties). Predominantly the correlation between catchment properties (e.g. topographic index, transmissivity, land use) and simulated water flows varies from catchment to catchment. This study indicates that an aggregation of input data for the calculation of regional water balances using TOPLATS type models leads to significant errors from a resolution exceeding 500 m. A meaningful aggregation of data should in the first instance aim on preserving the areal fractions of land use classes.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-10
    Description: The purpose of this paper is to stimulate a re-thinking of how we, the catchment hydrologists, could become reliable forecasters. A group of catchment modellers predicted the hydrological response of a man-made 6 ha catchment in its initial phase (Chicken Creek) without having access to the observed records. They used conceptually different model families. Their modelling experience differed largely. The prediction exercise was organized in three steps: (1) for the 1st prediction modellers received a basic data set describing the internal structure of the catchment (somewhat more complete than usually available to a priori predictions in ungauged catchments). They did not obtain time series of stream flow, soil moisture or groundwater response. (2) Before the 2nd improved prediction they inspected the catchment on-site and attended a workshop where the modellers presented and discussed their first attempts. (3) For their improved 3rd prediction they were offered additional data by charging them pro forma with the costs for obtaining this additional information. Holländer et al. (2009) discussed the range of predictions obtained in step 1. Here, we detail the modeller's decisions in accounting for the various processes based on what they learned during the field visit (step 2) and add the final outcome of step 3 when the modellers made use of additional data. We document the prediction progress as well as the learning process resulting from the availability of added information. For the 2nd and 3rd step, the progress in prediction quality could be evaluated in relation to individual modelling experience and costs of added information. We learned (i) that soft information such as the modeller's system understanding is as important as the model itself (hard information), (ii) that the sequence of modelling steps matters (field visit, interactions between differently experienced experts, choice of model, selection of available data, and methods for parameter guessing), and (iii) that added process understanding can be as efficient as adding data for improving parameters needed to satisfy model requirements.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-09-01
    Print ISSN: 0016-7061
    Electronic ISSN: 1872-6259
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2005-01-01
    Print ISSN: 1474-7065
    Electronic ISSN: 1873-5193
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...