ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 99 (1995), S. 16483-16489 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 3 (1980), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Some of the materials which are commonly used in equipment for carbon dioxide and water exchange analysis can adsorb substantial amounts of carbon dioxide and water and, thus, may cause large experimental errors. Also presented are procedures for determining the influence of light intensity, carbon dioxide concentration, and temperature upon photosynthesis and transpiration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 6 (1983), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Fully expanded leaves of 25°C grown Phaseolus vulgaris and six other species were exposed for 3 h to chilling temperatures at photon flux densities equivalent to full sunlight. In four of the species this treatment resulted in substantial inhibition of the subsequent quantum yield of CO2 uptake, indicating reduction of the photochemical efficiency of photosynthesis. The extent of inhibition was dependent on the photon flux density during chilling and no inhibition occurred when chilling occurred at a low photon flux density. No inhibition occurred at temperatures above 11.5°C, even in the presence of the equivalent of full sunlight. This interaction between chilling and light to cause inhibition of photosynthesis was promoted by the presence of oxygen at normal air partial pressures and was unaffected by the CO2 partial pressure present when chilling occurred in air. When chilling occurred at low O2 partial pressures, CO2 was effective in reducing the degree of inhibition. Apparently, when leaves of chilling-sensitive plants are exposed to chilling temperatures in air of normal composition then light is instrumental in inducing rapid damage to the photochemical efficiency of photosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 16 (1963), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 21 (1968), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The activity of the photosynthetic enzyme carboxydismutase (ribulose-l,5-diphosphate carboxylase) was measured in leaf extracts of a number of higher plant species from habitats with greatly contrasting light intensities. Plants occupying sunny habitats and capable of light saturated rates of photosynthesis several times higher than those growing in the deep shade of redwood forests also have a considerably higher carboxydismutase activity. Thus, when expressed on the basis of total chlorophyll or even fresh weight, the enzyme activity is several times greater among the sun than among the shade species.The comparatively low content of soluble protein in the shade plants indicates that their content of enzymes other than carboxydismutase also is low. Nevertheless, the activity of carboxydismutase even on the basis of soluble protein appears to be significantly higher in the sun than in the shade species.It is concluded that low carboxydismutase activity probably is one of the factors that limit the capacity for light saturated photosynthesis in the shade plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 21 (1968), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Measurements of the fraction of the incident light absorbed by diverse Solidago leaves revealed that differences in light harvesting capacity cannot explain the differences in efficiency of utilization of weak light in photosynthesis that have previously been shown to exist between sun and shade ecotypes when these have been grown in strong light and between identical clones of shade ecotypes when grown at different light intensities. Photosynthesis measurements at low and normal oxygen concentrations, provided no evidence that a different degree of inhibition of photo-synthetic CO2 uptake by atmospheric oxygen is responsible for the observed differences in photosynthetic efficiency, at low or high light intensities. These results support the conclusion that the markedly less efficient use of weak light by shaded habitat clones grown in strong as compared with weak light is caused primarily by damage to the photosystems, or to a site close to them. Measurements of Emerson enhancement and of light-induced absorbance changes provide some evidence that photoreaction II is more affected than I.Enzyme extracts prepared from clones native to an exposed habitat were found to contain considerably higher activities of carboxydismutase (ribulosc-l,5-diphos-phate carboxylase) than from clones native to a shaded habitat when the plants were previously grown at a moderately high light intensity. Exposed habitat clones apparently have a genetically determined, higher capacity to produce the carboxyla-tion enzyme than shaded habitat clones. The high degree of correlation found when the light-saturated rate of CO2 uptake in vivo of a number of individual Solidago leaves is plotted against the carboxydismutase activities found in the extracts of these same leaves suggests that low carboxydismutase activity is one of the intrinsic properties responsible for the low capacity for light-saturated photosynthesis of clones from shaded habitats.It is concluded from this and other investigations that differentiation between plants from habitats with contrasting light intensities, whether unrelated species or ecotypos of the same species, probably involves the capacity of several component steps of the photosynthetic process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 13 (1960), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 19 (1966), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The influence of oxygen concentration in the range 0–21% on photosynthesis in intact leaves of a number of higher plants has been investigated.Photosynthetic Co2 fixation of higher plants is markedly inhibited by oxygen in concentrations down to less than 2%. The inhibition increases with oxygen concentration and is about 30% in an atmosphere of 21% O2 and 0.03% Co.2. Undoubtedly, therefore, oxygen in normal air exerts a strong inhibitory effect on photosynthetic Co2 fixation of land plants under natural conditions.The inhibitory effect of oxygen is rapidly produced and fully reversible.The degree of inhibition is independent of light intensity.The quantum yield for Co2 fixation, i.e. the slope of the linear part of the curve for Co2 uptake versus absorbed quanta, is inhibited to the same degree as the light saturated rate at all oxygen concentrations studied.Diverse species of higher plants, varying greatly in photosynthetic response to light intensity and Co2 concentration, and with light saturated roles of Co2 fixation differing by a factor of more than 10 times, show a remarkable similarity in their response to oxygen concentration. By contrast, when studied under the same conditions as the higher plants, the green algae Chlorella and Ulva did not show-any measurable inhibition of photosynthetic Co2 fixation. Similarity, the increase in fluorescence intensity with increasing oxygen concentrations found in higher plants also was not seen in Chlorella. The present results, together with previous data on the photosynthetic response of algae to oxygen concentration, indicate that the photosynthetic apparatus of higher plants differs considerably from that of algae in its sensitivity to oxygen.The inhibitory effect of oxygen on photosynthetic Co2 fixation in higher plants is somewhat higher at wavelengths which excite preferentially photosystem I. Also, the Emerson enhancement of Co2 fixation measured when a far red beam of low intensity is imposed on a background of red light is greater under low oxygen concontrution than under air. Measurements of reversible light-induced absorbance changes reveal that the change at 591 nm, probably caused by pla.stocyanin, is affected by oxygen concentration only if photosystem II is excited. the reducing effect on plastocyanin, caused by excitation of this system, decreases with increasing oxygen concentration. From these results it is suggested that a possible site of the inhibition by oxygen is in the electron carrier chain between the two photosystems. Oxygen might act as an electron acceptor at this site, causing reducing power to react back with molecular oxygen. However, this hypothesis does not account for equal inhibitions of the quantum yield and the light saturated rate of photosynthetic CO2 uptake.Through the photosynthetic process plants take up carbon dioxide and evolve oxygen. The present high concentration of molecular oxygen in the atmosphere is generally considered to have arisen from the activity of photo-synthetic organisms. The effect of oxygen concentration would seem, therefore, to he a problem of great interest, not only in the field of the biophysics and biochemistry of photosynthesis, but in ecology and other branches of biology as well.It was discovered by Warburg (1920) that high concentrations of oxygen inhibit the rate of photosynthetic oxygen evolution in the unicellular alga Chlorella. Since then, it has been confirmed by various authors that oxygen cconcentrations in the range 21–100 per cent have a marked inhibitory effect on photosynthesis, particularly at saturating light intensities. There is some evidence that under conditions when carbon dioxide concentration limits photosynthesis, the inhibition may become obvious even in 21 per cent oxygen. The inhibition has not been considered to operate at low light intensities. A review on the subject has been given by Turner and Brittain (1962).Various hypotheses have been put forward to explain the inhibitory effect of oxygen, commonly referred to as the Warhurg effect. Some authors favor the idea of enzyme inhibition; Turner et al. (1958) that one or more enzymes of the carbon reduction cycle are inactivated by oxygen: lirianlals (1962) that enzymes of the oxygen-evolving complex are inhihited. Other hypotheses concern back-reactions in which molecular oxygen is taken up, thus reversing the photosynthetic process. These reactions include photo-oxidation, photorespiration, and the Mehler reaction (Tamiya et al., 1957). At present, there is no generally accepted hypothesis explaining the effect.The often conflicting results on which these hypotheses were based have been obtained mostly on algae. The first observation of an inhibitory effect on photosynthesis in a higher plant was made hy McAlister and Myers (1940) in wheat leaves. They found that the photosyntlietic CO2 uptake was markedly lower in air than in an atmosphere of about 0.5 per cent oxygen. At the CO2 concentration used (0.03%) the inhibition was present both at high and moderate light intensities. No data were obtained at low light intensities.Although the study of the effect of oxygen concentration on photosynthesis in higher plants would seem to be of great interest, particularily since the natural environment of most land plants is an atmosphere with an oxygen content of 21 per cent, it has attracted very little attention. To the author's knowledge no thorough investigation on the subject has been published.The present investigalion is directed toward elucidatirng the photosynthetic response of higher plants to oxygen concentrations up to that of normal air. Data are presented showing that the photosynthetic CO2 fixation in intact leaves of higher plants, regardless of light intensity, is strongly inhibited by oxygen in normal air, and that the pholosynthetic response to oxygen differs considerably from that of green algae. The present investigalion is directed toward elucidatirng the photosynthetic response of higher plants to oxygen concentrations up to that of normal air. Data are presented showing that the photosynthetic CO2 fixation in intact leaves of higher plants, regardless of light intensity, is strongly inhibited by oxygen in normal air, and that the pholosynthetic response to oxygen differs considerably from that of green algae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 19 (1966), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Photosynthetic adaptation to light intensity has been studied in clones of populations from shaded and exposed habitats of Rumex acetosa and Geum rivale. Clones of the shade species Lamium galeobdolon and the sun species Plantago lanceolata were also included for comparison. The plants were grown under controlled conditions at a high and a low light intensity. The capacity of photosynthetic carbon dioxide uptake at low as well as at saturating light intensities was determined on single attached leaves.As was previously demonstrated in Solidago virgaurea, clones of populations native to shaded and to exposed environments show differences in the photosynthetic response to light intensity during growth. The data provide evidence that populations of the same species native to habitats with contrasting light intensities differ in their photosynthetic properties in an adaptive manner Ln a similar mode as sun and shade species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Photosynthetic light harvesting in plants is regulated in response to changes in incident light intensity. Absorption of light that exceeds a plant's capacity for fixation of CO2 results in thermal dissipation of excitation energy in the pigment antenna of photosystem II by a poorly ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...