ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2024-02-07
    Description: The Southern Ocean is among the largest contemporary sinks of atmospheric carbon dioxide on our planet; however, remoteness, harsh weather and other circumstances have led to an undersampling of the ocean basin, compared with its northern hemispheric counterparts. While novel data interpolation methods can in part compensate for such data sparsity, recent studies raised awareness that we have hit a wall of unavoidable uncertainties in air-sea CO2 flux reconstructions. Here, we present results from autonomous observing campaigns using a novel platform to observe remote ocean regions: sailboats. Sailboats are at present a free of charge environmentally friendly platform that recurrently pass remote ocean regions during round-the-globe racing events. During the past 5 years, we collected 〉350 000 measurements of the sea surface partial pressure of CO2 (pCO(2)) around the globe including the Southern Ocean throughout an Antarctic circumnavigation during the Vendee Globe racing event. Our analysis demonstrates that the sailboat tracks pass regions where large uncertainty in the air-sea CO2 flux reconstruction prevails, with regional oversaturation or undersaturation of the sea surface pCO(2). Sailboat races provide an independent cross-calibration platform for autonomous measurement devices, such as Argo floats, ultimately strengthening the entire Southern Ocean observing system.This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-05
    Description: The sailboat Seaexplorer collected underway sea surface partial pressure of CO2 (pCO2) data for 129 days (2018–2021), including an Antarctic circumnavigation. By comparing ensembles of data-driven air-sea CO2 fluxes computed with and without sailboat data and applying a detection algorithm, we show that these sailboat observations significantly increase the regional carbon uptake in the North Atlantic and decrease it in the Southern Ocean. While compensating changes in both basins limit the global effect, the Southern Ocean–particularly frontal regions (40°S–60°S) during summertime—exhibited the largest air-sea CO2 flux changes, averaging 20% of the regional mean. Assessing the sensitivity of the air-sea CO2 flux to measurement uncertainty, the results stay robust within the expected random measurement uncertainty (± 5 μatm) but remain undetectable with a measurement offset of 5 µatm. We thus conclude that sailboats fill essential measurement gaps in remote ocean regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...