ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: In this paper, the elastic wave propagation method was used in damage detection in thin structures. The effectiveness and accuracy of the system based on the wave propagation phenomenon depend on the number and localization of the sensors. The utilization of the piezoelectric (PZT) transducers makes possible to build a low-cost damage detection system that can be used in structural health monitoring (SHM) of the metallic and composite structures. The different number and localization of transducers were considered in the numerical and experimental analysis of the wave propagation phenomenon. The relation of the sensors configuration and the damage detection capability was demonstrated. The main assumptions and requirements of SHM systems of different levels were discussed with reference to the damage detection expectations. The importance of the damage detection system constituents (sensors number, localization, or damage index) in different levels of analysis was verified and discussed to emphasize that in many practical applications introducing complicated procedures and sophisticated data processing techniques does not lead to improving the damage detection efficiency. Finally, the necessity of the appropriate formulation of SHM system requirements and expectations was underlined to improve the effectiveness of the detection methods in particular levels of analysis and thus to improve the safety of the monitored structures.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: The proposed new technique of fatigue life prediction for notched composite plates is based on a residual strength model calibrated with the use of step-wise fatigue tests. It was proposed to calibrate the fatigue model with fatigue tests in which load conditions are in a step-wise fashion. The adopted fatigue model takes into account the most important loading parameters such as testing frequency, stress ratio, layer orientation and maximal fatigue stress. It was demonstrated that with the use of step-wise fatigue tests, it is possible to calibrate the fatigue model for a particular material and structure with the use of fewer samples. In the experimental tensile and fatigue tests TVR 380 M12/26%/R-glass/epoxy composite plates [+45°/−45°]4 with circular and elliptical cut-outs were used. The fatigue tests were performed under different loading conditions. The influence of testing frequency, stress ratio, maximal fatigue load and also geometry of the cut-out on damage growth rate and fatigue life were studied. The predicted fatigue life was in good agreement with the durability determined experimentally in all investigated samples.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-09-11
    Description: Aerospace, Vol. 5, Pages 95: Natural Frequencies of Rectangular Laminated Plates—Introduction to Optimal Design in Aeroelastic Problems Aerospace doi: 10.3390/aerospace5030095 Authors: Aleksander Muc Free vibration (or eigenvalue analysis) is a prerequisite for aeroelastic analysis. For divergence analysis, slope influence coefficients (rotation at point i due to unit load at point j) are calculated using free vibration mode shapes and corresponding frequencies. The lowest eigenvalue is of interest and gives the divergence speed. The present paper considers the maximization problem of eigenfrequencies for composite panels. The influence of boundary conditions and constant or variable stiffnesses on optimization results are investigated herein. A new convenient set of design variables is employed in the analysis. The computations are carried out with the use of the Rayleigh–Ritz method and Finite Element analysis (2D quadrilateral and 3D solid elements).
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-16
    Description: Materials, Vol. 11, Pages 1019: Peculiarities in the Material Design of Buckling Resistance for Tensioned Laminated Composite Panels with Elliptical Cut-Outs Materials doi: 10.3390/ma11061019 Authors: Aleksander Muc The results of analytical and numerical studies of the buckling behavior of laminated multilayered tensioned sheets with circular and elliptical openings are presented. The analysis shows the significant influence of stress concentration effects on buckling modes and loads, particularly taking into consideration variations in the E1/E2 and E1/G12 ratios. The results of finite element (FE) computations prove that the buckling mode cannot be described by a single buckle localized at the apex of the hole. The optimal design of such structures seems to be much more complicated than classical buckling problems of compressed laminated panels without holes. However, the obtained results indicate that the optimal laminate configurations occur at the boundaries of the feasible regions of the introduced design space. Both continuous and discrete fibre orientations are considered. For continuous fibre orientations, the optimal stacking sequence corresponds to angle-ply symmetric laminates.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: The application of numerical homogenization and optimization in the design of micro- and nanocomposite reinforcement is presented. The influence of boundary conditions, form of a representative volume element, shape and distribution of reinforcement are distinguished as having the crucial influence on a design of the reinforcement. The paper also shows that, in the optimization problems, the distributions of any design variables can be expressed by n-dimensional curves. It applies not only to the tasks of optimizing the shape of the edge of the structure or its mid-surface but also dimensional optimization or topology/material optimization. It is shown that the design of reinforcement may be conducted in different ways and 2D approaches may be expanding to 3D cases.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-02-04
    Description: Materials, Vol. 11, Pages 234: Design of Particulate-Reinforced Composite Materials Materials doi: 10.3390/ma11020234 Authors: Aleksander Muc Marek Barski A microstructure-based model is developed to study the effective anisotropic properties (magnetic, dielectric or thermal) of two-phase particle-filled composites. The Green’s function technique and the effective field method are used to theoretically derive the homogenized (averaged) properties for a representative volume element containing isolated inclusion and infinite, chain-structured particles. Those results are compared with the finite element approximations conducted for the assumed representative volume element. In addition, the Maxwell–Garnett model is retrieved as a special case when particle interactions are not considered. We also give some information on the optimal design of the effective anisotropic properties taking into account the shape of magnetic particles.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018
    Description: Free vibration (or eigenvalue analysis) is a prerequisite for aeroelastic analysis. For divergence analysis, slope influence coefficients (rotation at point i due to unit load at point j) are calculated using free vibration mode shapes and corresponding frequencies. The lowest eigenvalue is of interest and gives the divergence speed. The present paper considers the maximization problem of eigenfrequencies for composite panels. The influence of boundary conditions and constant or variable stiffnesses on optimization results are investigated herein. A new convenient set of design variables is employed in the analysis. The computations are carried out with the use of the Rayleigh–Ritz method and Finite Element analysis (2D quadrilateral and 3D solid elements).
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Bradford : Emerald
    Engineering computations 13 (1996), S. 263-282 
    ISSN: 0264-4401
    Source: Emerald Fulltext Archive Database 1994-2005
    Topics: Technology
    Notes: Presents a finite element formulation of the layout optimization and design sensitivity applied to doubly-curved shells of revolution. The objectives of the optimization are to maximize buckling pressures and first-ply-failure pressures. The problem is formulated and solved with the use of geometrically non-linear transverse shear shell theory. However, the optimization method proposed limits the sensitivity analysis to a geometrically linear problem. Focuses special attention on the formulation of the optimization problem taking into account various factors, such as the form of geometrical and physical relations, types of design variables and the finite element discretization. Demonstrates several numerical examples to illustrate the capability of the proposed optimization procedures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 47-50 (June 2008), p. 1250-1253 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Since the atomic structure of carbon nanotubes demonstrates evidently anisotropicmechanical properties an analytical molecular structural mechanics model is introduced in order toderive longitudinal and circumferential moduli of nanotubes. The identification is based on theeigenfrequencies analysis of the proposed computational model. It is combined with the FE analysisand the interatomic potentials. Detailed derivations are presented and the predicted results areshown and discussed with a few computational examples
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 47-50 (June 2008), p. 1254-1257 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Usually magnetorheological fluids are dispersions of micronic magnetic particles in acarrier liquid. We shall present the basic phenomena related to the numerical description ofhomogenization for such type of composite structures. Our attention is mainly focused on theprediction of the effective permeabilities that can play a fundamental role in the aggregation ofmagnetic particles and are responsible for the gelation of the suspension and will allow thesuspension to flow. We shall also give some information on the optimal design of the effectivepermeabilities taking into account the shape of magnetic particles
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...